ZHCSNB1 February   2021 INA183

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Single-Supply Operation from IN+
      2. 8.3.2 Low Gain Error and Offset Voltage
      3. 8.3.3 Low Drift Architecture
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 Unidirectional, High-Side Operation
      3. 8.4.3 Input Differential Overload
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 RSENSE and Device Gain Selection
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 静电放电警告
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

Low Gain Error and Offset Voltage

The maximum gain error of the INA183 is 0.4% and is specified over the full operational temperature range. The low gain error allows for accurate measurements as the sense voltage increases, and is designed for applications that need to detect overcurrent conditions accurately. The offset voltage of the INA183 is specified to be ±170 μV for all gain options. The low offset voltage allows for increased accuracy when the sense voltage is small or allows for reduction in the size of the current sense resistor with less impact on the total measurement accuracy. Smaller value resistors reduce the power loss in the application which allows the use of lower wattage resistors that are generally lower cost.