ZHCSO71A June   2021  – December 2021 LM74701-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage
      2. 8.3.2 Charge Pump
      3. 8.3.3 Gate Driver
      4. 8.3.4 Enable
      5. 8.3.5 Battery Voltage Monitoring (SW)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Conduction Mode
        1. 8.4.2.1 Regulated Conduction Mode
        2. 8.4.2.2 Full Conduction Mode
        3. 8.4.2.3 VDS Clamp Mode
      3. 8.4.3 Reverse Current Protection Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Design Considerations
        2. 9.2.2.2 MOSFET Selection
        3. 9.2.2.3 Charge Pump VCAP (CVCAP) and Input Capacitance (CIN)
        4. 9.2.2.4 Output Capacitance (COUT)
      3. 9.2.3 Application Curves
    3. 9.3 What to Do and What Not to Do
    4. 9.4 OR-ing Application Configuration
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 接收文档更新通知
    2. 12.2 支持资源
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 术语表
  13. 13Mechanical, Packaging, and Orderable Information

Charge Pump

The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge pump capacitor is placed between VCAP and ANODE pins to provide energy to turn on the external MOSFET. In order for the charge pump to supply current to the external capacitor the EN pin voltage must be above the specified input high threshold, V(EN_IH). When enabled, the charge pump sources a charging current of 300 µA typical. If EN pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET can be driven above its specified threshold voltage, the VCAP to ANODE voltage must be above the undervoltage lockout threshold, typically 6.5 V, before the internal gate driver is enabled. Use Equation 1 to calculate the initial gate driver enable delay.

Equation 1.

where

  • C(VCAP) is the charge pump capacitance connected across ANODE and VCAP pins
  • V(VCAP_UVLOR) = 6.5 V (typical)

To remove any chatter on the gate drive, approximately 800 mV of hysteresis is added to the VCAP undervoltage lockout. The charge pump remains enabled until the VCAP to ANODE voltage reaches 12.4 V, typically, at which point the charge pump is disabled decreasing the current draw on the ANODE pin. The charge pump remains disabled until the VCAP to ANODE voltage is below to 11.6 V typically at which point the charge pump is enabled. The voltage between VCAP and ANODE continue to charge and discharge between 11.6 V and 12.4 V as shown in Figure 8-1. By enabling and disabling the charge pump, the operating quiescent current of the LM74701-Q1 is reduced. When the charge pump is disabled it sinks 5 µA typically.

GUID-20211118-SS0I-CLFT-ZKLW-ZKFLVSPK43PN-low.gifFigure 8-1 Charge Pump Operation