ZHCT388 July   2023 ADC32RF54

 

  1.   1
  2. 1引言
  3. 2为什么噪声系数在数字接收器设计中很重要
  4. 3计算系统的噪声系数
  5. 4结论

为什么噪声系数在数字接收器设计中很重要

数字接收器在两种不同场景下工作,如图 1 所示。在阻断情况下,存在干扰或干扰器,接收器必须以较低的射频增益运行,以免使 ADC 饱和。在此设置中,ADC 被干扰信号驱动至接近满量程;因此,ADC 的大信号信噪比 (SNR) 决定了可检测到的信号微弱程度。还有其他降级机制,例如相位噪声和无杂散动态范围。

在第二种场景中,不存在干扰。检测可能的最弱信号仅取决于接收器的固有本底噪声,这种情况通常以接收器灵敏度进行测量。噪声系数用于测量由接收器信号链中的元件引起的 SNR 降级。

GUID-20230216-SS0I-ZWQM-DK9Z-VPF6KQHJH49K-low.svg图 1 阻断或干扰情况与接收器灵敏度场景的比较。

ADC 的噪声系数通常是接收器的薄弱环节(约为 25dB 至 30dB),而低噪声放大器 (LNA) 的噪声系数低至 <1dB。不过,可以通过使用 LNA 向模拟射频前端(靠近天线)添加增益来改善 ADC 噪声系数。1dB 接收器系统噪声系数和 2dB 接收器系统噪声系数之间的差异约为 20%。这种差异意味着噪声系数为 1dB 的接收器可以检测振幅大约弱 20% 的信号。在软件定义无线电 (SDR) 中,这意味着无线电输出功率降低,从而延长电池寿命,而在雷达中,这使得覆盖更远的距离成为可能。

SDR 或数字雷达中的现代接收器设计使用直接射频采样 ADC 来减小尺寸、减轻重量并降低功耗。该架构无需射频下变频混频级,从而简化了接收器设计。ADC 噪声系数越好,所需的增益越低,实现的节省越多。此外,使用更少的额外射频增益意味着当存在干扰时,需要降低的增益更小,并在接收器中保持更高的动态范围。