ZHCUBL4A December   2023  – August 2024

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 主要系统规格
    2. 1.2 具有升压转换器的 PV 输入
    3. 1.3 双向直流/直流转换器
    4. 1.4 直流/交流转换器
  8. 2系统设计原理
    1. 2.1 升压转换器
      1. 2.1.1 电感器设计
      2. 2.1.2 整流器二极管选型
      3. 2.1.3 MPPT 运行
    2. 2.2 双向直流/直流转换器
      1. 2.2.1 电感器设计
      2. 2.2.2 低压侧电容器
      3. 2.2.3 高压侧电容器
    3. 2.3 直流/交流转换器
      1. 2.3.1 升压电感器设计
      2. 2.3.2 直流链路电容器
  9. 3系统概述
    1. 3.1 方框图
    2. 3.2 设计注意事项
      1. 3.2.1 升压转换器
        1. 3.2.1.1 高频 FET
        2. 3.2.1.2 输入电压和电流检测
      2. 3.2.2 双向直流/直流转换器
        1. 3.2.2.1 高频 FET
        2. 3.2.2.2 电流和电压测量
        3. 3.2.2.3 输入继电器
      3. 3.2.3 直流/交流转换器
        1. 3.2.3.1 高频 FET
        2. 3.2.3.2 电流测量
        3. 3.2.3.3 电压测量
        4. 3.2.3.4 辅助电源
        5. 3.2.3.5 无源器件选择
    3. 3.3 主要米6体育平台手机版_好二三四
      1. 3.3.1  TMDSCNCD280039C - TMS320F280039C 评估模块 C2000™ MCU controlCARD™
      2. 3.3.2  LMG3522R030 具有集成式驱动器、保护和温度报告功能的 650V 30mΩ GaN FET
      3. 3.3.3  TMCS1123 - 精密霍尔效应电流传感器
      4. 3.3.4  AMC1302 - 具有 ±50mV 输入电压的增强型隔离式精密放大器
      5. 3.3.5  ISO7741 EMC 性能优异的四通道、3 个正向、1 个反向增强型数字隔离器
      6. 3.3.6  ISO7762 EMC 性能优异的六通道、4 个正向、2 个反向增强型数字隔离器
      7. 3.3.7  UCC14131-Q1 汽车类、1.5W、12V 至 15V VIN、12V 至 15V VOUT、高密度、> 5kVRMS 隔离式直流/直流模块
      8. 3.3.8  ISOW1044 具有集成直流/直流电源的低辐射、5kVRMS 隔离式 CAN FD 收发器
      9. 3.3.9  ISOW1412 具有集成电源的低辐射、500kbps、增强型隔离式 RS-485、RS-422 收发器
      10. 3.3.10 OPA4388 四通道、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器
      11. 3.3.11 OPA2388 双通道、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器
      12. 3.3.12 INA181 26V 双向 350kHz 电流检测放大器
  10. 4硬件、软件、测试要求和测试结果
    1. 4.1 硬件要求
    2. 4.2 注释
    3. 4.3 测试设置
      1. 4.3.1 升压级
      2. 4.3.2 双向直流/直流级 - 降压模式
      3. 4.3.3 直流/交流级
    4. 4.4 测试结果
      1. 4.4.1 升压转换器
      2. 4.4.2 双向直流/直流转换器
        1. 4.4.2.1 降压模式
        2. 4.4.2.2 升压模式
      3. 4.4.3 直流/交流转换器
  11. 5设计和文档支持
    1. 5.1 设计文件
      1. 5.1.1 原理图
      2. 5.1.2 BOM
    2. 5.2 工具与软件
    3. 5.3 文档支持
    4. 5.4 支持资源
    5. 5.5 商标
  12. 6关于作者
  13. 7修订历史记录

MPPT 运行

PV 电池板的功率输出取决于若干参数,例如电池板受到的辐照、电池板电压、电池板温度等。相应地,一串 PV 电池板的功率输出取决于 PV 电池板的个别情况。因此,在影响参数值发生变化的条件下,功率输出也在一天之中不断变化。图 2-1 展示了一块太阳能电池板的 I-V 曲线和 P-V 曲线。I-V 曲线表示电池板输出电流与输出电压之间的关系。如图中的 I-V 曲线所示,当端子短接时,电池板电流最大;当端子开路且空载时,电池板电流最小。

TIDA-010938 太阳能电池板特性 I-V 和 P-V 曲线图 2-1 太阳能电池板特性 I-V 和 P-V 曲线

如图所示,当电池板电压和电池板电流的乘积达到最大值时,从电池板获得的最大功率表示为 PMAX。该点指定为最大功率点 (MPP)。图 2-2图 2-3 举例说明了各项参数对太阳能电池板输出功率的影响。这些图形还显示了太阳能电池板的功率输出随辐照度的变化。在这些图中可观察到,太阳能电池板的功率输出随辐照度的增加而增加,随辐照度的减少而减少的情况。还要注意的是,发生 MPP 时的电池板电压也随着辐照度的变化而变化。类似的概念也可应用于串式逆变器,在该逆变器中,除了监视输出串电流之外,还监视总串电压。

TIDA-010938 不同辐照条件下太阳能电池板的输出功率变化(图 A)图 2-2 不同辐照条件下太阳能电池板的输出功率变化(图 A)
TIDA-010938 不同辐照条件下太阳能电池板的输出功率变化(图 B)图 2-3 不同辐照条件下太阳能电池板的输出功率变化(图 B)

有关自动识别电池板 MPP 的挑战通常通过在系统中采用 MPPT 算法来解决。MPPT 算法尝试在最大功率点运行串,并使用开关功率级来为负载提供从电池板中汲取的功率。扰动观测法 (PO) 是更为常用的 MPPT 算法之一。该算法的基本原理简单,而且易于在基于微控制器的系统中实现。该过程会稍微提高或降低(扰动)电池板的工作电压。可通过改变转换器的占空比来扰动串电压。假定串电压已稍微增加,而这会导致电池板功率增加,那么沿同一方向执行另一个扰动。如果串电压的增加减少了电池板功率,则沿负方向执行扰动以稍微降低串电压。通过执行扰动并观察功率输出,系统开始在串 MPP 附近运行,并在 MPP 周围产生轻微振荡。扰动的大小决定了系统运行与 MPP 的接近程度。有时,该算法可能卡在局部最大值而不是全局最大值,但可以通过对算法进行细微调整来解决此问题。PO 算法易于实现且有效,因此此设计选用了这一算法。