ZHCUBM2 December   2023

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 术语
    2. 1.2 关键系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
    3. 2.3 重点米6体育平台手机版_好二三四
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 TMP6131
      4. 2.3.4 UCC28881
      5. 2.3.5 TPS54202
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV74033
    4. 2.4 系统设计原理
      1. 2.4.1 硬件设计
        1. 2.4.1.1 模块化设计
        2. 2.4.1.2 高压降压辅助电源
        3. 2.4.1.3 直流链路电压检测
        4. 2.4.1.4 电机相电压检测
        5. 2.4.1.5 电机相电流检测
        6. 2.4.1.6 外部过流保护
        7. 2.4.1.7 TMS320F2800F137 的内部过流保护
      2. 2.4.2 三相 PMSM 驱动器
        1. 2.4.2.1 PM 同步电机的场定向控制
          1. 2.4.2.1.1 空间矢量定义和投影
            1. 2.4.2.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke 变换
            2. 2.4.2.1.1.2 α , β ⇒ ( d ,   q ) Park 变换
          2. 2.4.2.1.2 交流电机 FOC 基本配置方案
          3. 2.4.2.1.3 转子磁通位置
        2. 2.4.2.2 PM 同步电机的无传感器控制
          1. 2.4.2.2.1 具有锁相环的增强型滑模观测器
            1. 2.4.2.2.1.1 IPMSM 的数学模型和 FOC 结构
            2. 2.4.2.2.1.2 IPMSM 的 ESMO 设计
            3. 2.4.2.2.1.3 使用 PLL 的转子位置和转速估算
        3. 2.4.2.3 弱磁 (FW) 和每安培最大扭矩 (MTPA) 控制
        4. 2.4.2.4 电机驱动器的硬件必要条件
          1. 2.4.2.4.1 电机电流反馈
            1. 2.4.2.4.1.1 三分流器电流检测
            2. 2.4.2.4.1.2 单分流器电流检测
          2. 2.4.2.4.2 电机电压反馈
  9. 3硬件、软件、测试要求和测试结果
    1. 3.1 入门硬件
      1. 3.1.1 硬件板概述
      2. 3.1.2 测试条件
      3. 3.1.3 电路板验证所需的测试设备
    2. 3.2 入门 GUI
      1. 3.2.1 测试设置
      2. 3.2.2 GUI 软件概述
      3. 3.2.3 设置串行端口
      4. 3.2.4 电机识别
      5. 3.2.5 旋转电机
      6. 3.2.6 电机故障状态
      7. 3.2.7 调整控制参数
      8. 3.2.8 虚拟示波器
    3. 3.3 C2000 固件入门
      1. 3.3.1 下载并安装电路板测试所需的软件
      2. 3.3.2 在 CCS 内打开工程
      3. 3.3.3 工程结构
      4. 3.3.4 测试步骤
        1. 3.3.4.1 构建级别 1:CPU 和电路板设置
          1. 3.3.4.1.1 启动 CCS 并打开工程
          2. 3.3.4.1.2 构建和加载工程
          3. 3.3.4.1.3 设置调试环境窗口
          4. 3.3.4.1.4 运行代码
        2. 3.3.4.2 构建级别 2:带 ADC 反馈的开环检查
          1. 3.3.4.2.1 启动 CCS 并打开工程
          2. 3.3.4.2.2 构建和加载工程
          3. 3.3.4.2.3 设置调试环境窗口
          4. 3.3.4.2.4 运行代码
        3. 3.3.4.3 构建级别 3:闭合电流环路检查
          1. 3.3.4.3.1 启动 CCS 并打开工程
          2. 3.3.4.3.2 构建和加载工程
          3. 3.3.4.3.3 设置调试环境窗口
          4. 3.3.4.3.4 运行代码
        4. 3.3.4.4 版本级别 4:完整电机驱动控制
          1. 3.3.4.4.1 启动 CCS 并打开工程
          2. 3.3.4.4.2 构建和加载工程
          3. 3.3.4.4.3 设置调试环境窗口
          4. 3.3.4.4.4 运行代码
          5. 3.3.4.4.5 调整电机驱动 FOC 参数
          6. 3.3.4.4.6 调整弱磁和 MTPA 控制参数
          7. 3.3.4.4.7 调整电流检测参数
    4. 3.4 测试结果
      1. 3.4.1 负载和热力测试
      2. 3.4.2 通过外部比较器进行过流保护
      3. 3.4.3 通过内部 CMPSS 进行过流保护
    5. 3.5 将固件迁移至新的硬件板
      1. 3.5.1 配置 PWM、CMPSS 和 ADC 模块
      2. 3.5.2 设置硬件板参数
      3. 3.5.3 配置故障保护参数
      4. 3.5.4 设置电机电气参数
    6. 3.6 MSPM0 固件入门
  10. 4设计和文档支持
    1. 4.1 设计文件
      1. 4.1.1 原理图
      2. 4.1.2 物料清单
      3. 4.1.3 PCB 布局建议
      4. 4.1.4 Altium 工程
      5. 4.1.5 Gerber 文件
    2. 4.2 软件文件
    3. 4.3 文档支持
    4. 4.4 支持资源
    5. 4.5 商标
  11. 5作者简介
交流电机 FOC 基本配置方案

图 2-12总结了用 FOC 进行扭矩控制的基本系统配置。

GUID-20210326-CA0I-5DM4-JKV2-4NZVTG6DD6N8-low.svg图 2-12 交流电机 FOC 基本配置方案

测量了两个电机相电流。这些测量值馈入 Clarke 变换模块。这个模块的输出为 i 和 i。电流的这两个分量是 Park 变换的输入,该变换给出了 d,q 旋转坐标系中的电流。isd 和 isq 分量与基准 isdref(磁通基准分量)和 isqref(扭矩基准分量)进行比较。此时,这个控制结构具有一个有意思的优势:只需改变磁通基准并获得转子磁通位置,该结构即可用于控制同步或感应电机。与在同步永磁电机中一样,转子磁通是固定的,并由磁体确定;所以无需产生转子磁通。因此,当控制 PMSM 时,将 isdref 设置为零。由于交流感应电机需要生成转子磁通才能运行,因此磁通基准一定不能为零。这很方便地解决了经典 控制结构的一个主要缺陷:异步驱动至同步驱动的可移植性。当使用转速 FOC 时,扭矩命令 isqref 可以是转速调节器的输出。电流调节器的输出是 Vsdref 和 Vsqref;这些输出应用于 Park 逆变换。这个模块的输出是 Vsαref 和 Vsβref,它们是 (α, β) 静止正交坐标系中定子矢量电压的分量。这些是空间矢量脉宽调制 (PWM) 的输入。这个块的输出是驱动此反相器的信号。请注意,Park 和 Park 逆变换均需要转子磁通位置。这个转子磁通位置的获得由交流机器的类型(同步或异步机器)而定。