ZHCUBZ4 April 2024
为了实现更好的动态性能,需要采用更加复杂的控制方案来控制 PM 电机。借助微控制器提供的数学处理能力,我们可以实施先进的控制策略,这些策略使用数学变换将永磁电机中的扭矩生成和磁化功能解耦。这种解耦的扭矩和磁化控制通常称为转子磁通定向控制,或简称为磁场定向控制 (FOC)。
在直流电机中,定子和转子的励磁是独立控制的,产生的扭矩和磁通可以独立调整,如图 3-3 所示。磁场激励强度(例如,磁场激励电流的振幅)决定了磁通的大小。通过转子绕组的电流确定了扭矩是如何生成。转子上的换向器在扭矩产生过程中发挥着有趣的作用。换向器与电刷接触,这个机械构造旨在将电路切换至机械对齐的绕组以产生最大的扭矩。这样的安排意味着,电机的扭矩产生在任何时候都非常接近于最佳情况。这里的关键点是,通过管理绕组以保持转子绕组产生的磁通与定子磁场垂直。
为了实现更好的动态性能,需要采用更加复杂的控制方案来控制 PM 电机。借助微控制器提供的数学处理能力,我们可以实施先进的控制策略,这些策略使用数学变换将永磁电机中的扭矩生成和磁化功能解耦。这种解耦的扭矩和磁化控制通常称为转子磁通定向控制,或简称为磁场定向控制 (FOC)。
在直流电机中,定子和转子的励磁是独立控制的,产生的扭矩和磁通可以独立调整,如图 3-3 所示。磁场激励强度(例如,磁场激励电流的振幅)决定了磁通的大小。通过转子绕组的电流确定了扭矩是如何生成。转子上的换向器在扭矩产生过程中发挥着有趣的作用。换向器与电刷接触,这个机械构造旨在将电路切换至机械对齐的绕组以产生最大的扭矩。这样的安排意味着,电机的扭矩产生在任何时候都非常接近于最佳情况。这里的关键点是,通过管理绕组以保持转子绕组产生的磁通与定子磁场垂直。
同步和异步电机上的 FOC(也称为矢量控制)旨在分别控制扭矩产生分量和磁化通量分量。利用 FOC 控制,我们能够解耦定子电流的扭矩分量和磁化通量分量。借助于磁化的去耦合控制,定子磁通的扭矩生成分量现在可以被看成是独立扭矩控制。为了去耦合扭矩和磁通,采用几个数学变换,而这是最能体现微控制器价值的地方。微控制器提供的处理能力可非常快速地执行使这些数学变换。反过来,这意味着控制电机的整个算法可以高速率执行,从而实现了更高的动态性能。除了去耦合,现在一个电机的动态模型被用于很多数量的计算,例如转子磁通角和转子速度。这意味着,它们的影响被计算在内,并且总体控制质量更佳。
根据电磁定律,同步电机中产生的扭矩等于两个现有磁场的矢量叉积,如方程式 6 所示。
该表达式表明,如果定子和转子磁场正交,则扭矩最大,这意味着我们需要将负载保持在 90 度。如果我们能够始终确保满足这一条件,并且能够正确地对磁通进行定向,将减少扭矩纹波并确保实现更好的动态响应。然而,您需要了解转子的位置:这可以通过位置传感器(诸如递增编码器)实现。对于无法接近转子的低成本应用,采用不同的转子位置观察器策略可无需使用位置传感器。
简而言之,目标是使转子和定子磁通保持正交:例如,目标是将定子磁通与转子磁通的 q 轴对齐,从而与转子磁通正交。为了实现这个目的,控制与转子磁通正交的定子电流分量以产生命令规定的扭矩,并且直接分量被设定为零。定子电流的直接分量可用在某些磁场减弱的情况下,这有抗拒转子磁通的作用,并且减少反电动势,从而实现更高速的运行。
磁场定向控制包括控制由矢量表示的定子电流。该控制基于将三相时间和速度相关系统变换为两坐标(d 和 q 坐标)时不变系统的投影。这些设计导致一个与 DC 机器控制结构相似的结构。磁场定向控制 (FOC) 电机需要两个常数作为输入基准:扭矩分量(与 q 坐标对齐)和磁通分量(与 d 坐标对齐)。由于磁场定向控制只是基于这些投影,因此控制结构将处理瞬时电量。这使得在每次的工作运转过程中(稳定状态和瞬态)均可实现准确控制,并且与受限带宽数学模型无关。因此,FOC 通过以下方式解决了传统方案存在的问题:
通过将转子磁通 (ψR) 的振幅保持在一个固定值,扭矩和扭矩分量 (iSq) 之间存在线性关系。然后我们可以通过控制定子电流矢量的扭矩分量来控制扭矩。