ZHCUBZ5A September   2021  – April 2024

 

  1.   1
  2.   摘要
  3.   商标
  4. 1引言
  5. 2电机控制理论
    1. 2.1 PMSM 的数学模型和 FOC 结构
    2. 2.2 PM 同步电机的磁场定向控制
    3. 2.3 PM 同步电机的无传感器控制
      1. 2.3.1 具有锁相环的增强型滑模观测器
        1. 2.3.1.1 PMSM 的 ESMO 设计
        2. 2.3.1.2 使用 PLL 的转子位置和转速估算
    4. 2.4 电机驱动器的硬件必要条件
      1. 2.4.1 电机相电压反馈
    5. 2.5 额外的控制特性
      1. 2.5.1 弱磁 (FW) 和每安培最大扭矩 (MTPA) 控制
      2. 2.5.2 快速启动
  6. 3在 TI 硬件套件上运行通用实验
    1. 3.1 受支持的 TI 电机评估套件
    2. 3.2 硬件电路板设置
      1. 3.2.1  LAUNCHXL-F280025C 设置
      2. 3.2.2  LAUNCHXL-F280039C 设置
      3. 3.2.3  LAUNCHXL-F2800137 设置
      4. 3.2.4  TMDSCNCD280025C 设置
      5. 3.2.5  TMDSCNCD280039C 设置
      6. 3.2.6  TMDSCNCD2800137 设置
      7. 3.2.7  TMDSADAP180TO100 设置
      8. 3.2.8  DRV8329AEVM 设置
      9. 3.2.9  BOOSTXL-DRV8323RH 设置
      10. 3.2.10 BOOSTXL-DRV8323RS 设置
      11. 3.2.11 DRV8353RS-EVM 设置
      12. 3.2.12 BOOSTXL-3PHGANINV 设置
      13. 3.2.13 DRV8316REVM 设置
      14. 3.2.14 TMDSHVMTRINSPIN 设置
      15.      34
      16.      35
    3. 3.3 实验软件实现
      1. 3.3.1 导入和配置工程
      2.      38
      3.      39
      4. 3.3.2 实验工程结构
      5. 3.3.3 实验软件概述
    4. 3.4 监控反馈或控制变量
      1. 3.4.1 使用 DATALOG 函数
      2. 3.4.2 使用 PWMDAC 函数
      3. 3.4.3 使用外部 DAC 板
    5. 3.5 使用不同的构建级别循序渐进地运行工程
      1. 3.5.1 级别 1 增量构建
        1. 3.5.1.1 构建和加载工程
        2. 3.5.1.2 设置调试环境窗口
        3. 3.5.1.3 运行代码
      2. 3.5.2 级别 2 增量构建
        1. 3.5.2.1 构建和加载工程
        2. 3.5.2.2 设置调试环境窗口
        3. 3.5.2.3 运行代码
      3. 3.5.3 级别 3 增量构建
        1. 3.5.3.1 构建和加载工程
        2. 3.5.3.2 设置调试环境窗口
        3. 3.5.3.3 运行代码
      4. 3.5.4 级别 4 增量构建
        1. 3.5.4.1 构建和加载工程
        2. 3.5.4.2 设置调试环境窗口
        3. 3.5.4.3 运行代码
  7. 4构建定制板
    1. 4.1 构建新的定制板
      1. 4.1.1 硬件设置
      2. 4.1.2 将参考代码迁移到定制电路板
        1. 4.1.2.1 设置硬件板参数
        2. 4.1.2.2 修改电机控制参数
        3. 4.1.2.3 更改引脚分配
        4. 4.1.2.4 配置 PWM 模块
        5. 4.1.2.5 配置 ADC 模块
        6. 4.1.2.6 配置 CMPSS 模块
        7. 4.1.2.7 配置故障保护函数
      3. 4.1.3 向电机控制工程中添加附加功能
        1. 4.1.3.1 添加按钮功能
        2. 4.1.3.2 添加电位器读取功能
        3. 4.1.3.3 添加 CAN 功能
    2. 4.2 支持新的 BLDC 电机驱动器板
    3. 4.3 将参考代码移植到新的 C2000 MCU
  8.   A 附录 A. 电机控制参数
  9.   参考资料
  10.   修订历史记录

PMSM 的数学模型和 FOC 结构

PMSM 的无传感器 FOC 结构如图 2-2 所示。在该系统中,eSMO 用于实现 IPMSM 系统的无传感器控制,eSMO 模型是利用反电动势模型和 PLL 模型设计的,用于估算转子位置和转速。

 PMSM 系统的无传感器 FOC 结构图 2-2 PMSM 系统的无传感器 FOC 结构

IPMSM 由一个三相定子绕组(a、b、c 轴)和用于励磁的永磁体 (PM) 转子组成。电机由标准的三相逆变器进行控制。可以使用相位 a-b-c 量对 IPMSM 进行建模。通过适当的坐标变换,可以得到 d-q 转子坐标系和 α-β 静止坐标系中的动态 PMSM 模型。这些坐标系之间的关系如方程式 1 所示。通用 PMSM 的动态模型可以在 d-q 转子坐标系中写为:

方程式 1. v d v q = R s + p L d - ω e L q ω e L d R s + p L q i d i q + 0 ω e λ p m

其中 vd 和 vq 分别是 q 轴和 d 轴定子端电压;id 和 iq 分别是 d 轴和 q 轴定子电流;Ld 和 Lq 分别是 q 轴和 d 轴电感,p 是导数算子,用于简写 d d t ;λpm 是永磁体产生的磁链,Rs 是定子绕组的电阻;ωe 是转子的电角速度。

 PMSM 建模坐标系的定义图 2-3 PMSM 建模坐标系的定义

通过使用如图 2-3 所示的 Park 逆变换,PMSM 的动力学可以在 α-β 静止坐标系中建模为:

方程式 2. v α v β = R s + p L d ω e ( L d - L q ) - ω e ( L d - L q ) R s + p L q i α i β + e α e β

其中,ea 和 eβ 是 α-β 轴上扩展电动势 (EEMF) 的分量,可以定义为:

方程式 3. e α e β = λ p m + L d - L q i d ω e - s i n ( θ e ) c o s ( θ e )

根据方程式 2方程式 3,通过等效变换和引入 EEMF 概念,可以将转子位置信息从电感矩阵中解耦出来,从而使 EEMF 成为唯一包含转子磁极位置信息的项。然后可以直接利用 EEMF 相位信息实现转子位置观测。使用定子电流作为状态变量,将 IPMSM 电压公式方程式 4 改写为状态公式:

方程式 4. i ˙ α i ˙ β = 1 L d - R s - ω e ( L d - L q ) ω e ( L d - L q ) - R s i α i β + 1 L d V α - e α V β - e β

由于定子电流是唯一可以直接测量的物理量,因此在定子电流路径上选择滑动面:

方程式 5. S x = i ^ α - i α i ^ β - i β = i ~ α i ~ β

其中 i ^ α i ^ β 是估算的电流,上标 ^ 表示变量为估算值,上标“˜”表示变量为变量误差,即观测值与实际测量值之间的差异。