ZHCY181 October   2021 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1. 编者的话
  2. 系统设计
    1. 2.1 控制
      1. 2.1.1 开环与闭环
    2. 2.2 反馈控制
      1. 2.2.1 误差率
    3. 2.3 动态系统
      1. 2.3.1 一阶系统
      2. 2.3.2 二阶系统
    4. 2.4 系统稳定性
      1. 2.4.1 增益裕度
      2. 2.4.2 相位裕度
    5. 2.5 时序要求
      1. 2.5.1 峰值/上升时间
      2. 2.5.2 稳定时间
      3. 2.5.3 过冲
      4. 2.5.4 阻尼
      5. 2.5.5 延迟
    6. 2.6 离散时域
    7. 2.7 滤波器
      1. 2.7.1 滤波器类型
      2. 2.7.2 滤波器阶数
    8. 2.8 备注
  3. 控制器
    1. 3.1 线性 PID
    2. 3.2 线性 PI
    3. 3.3 非线性 PID
    4. 3.4 2P2Z
    5. 3.5 3P3Z
    6. 3.6 直接形式控制器
      1. 3.6.1 DF11
      2. 3.6.2 DF13
      3. 3.6.3 DF22
      4. 3.6.4 DF23
    7. 3.7 备注
  4. ADC
    1. 4.1 ADC 定义
    2. 4.2 ADC 分辨率
      1. 4.2.1 单极的 ADC 分辨率
      2. 4.2.2 差分信号的 ADC 分辨率
      3. 4.2.3 分辨率电压与满量程间的关系
    3. 4.3 ADC 的量化误差
    4. 4.4 总谐波失真 (THD)
      1. 4.4.1 总谐波失真 (VRMS)
      2. 4.4.2 总谐波失真 (dBc)
    5. 4.5 交流信号
    6. 4.6 直流信号
    7. 4.7 稳定时间和转换精度
    8. 4.8 ADC 系统噪声
    9. 4.9 备注
  5. 比较器
    1. 5.1 基本操作
    2. 5.2 失调和迟滞
    3. 5.3 传播延迟
    4. 5.4 备注
  6. 处理
    1. 6.1 数据表示
    2. 6.2 中央处理器
      1. 6.2.1 CPU 基础知识
      2. 6.2.2 CPU 流水线
      3. 6.2.3 实时处理器的特性
      4. 6.2.4 信号链
    3. 6.3 存储器
    4. 6.4 直接存储器存取 (DMA)
    5. 6.5 中断
    6. 6.6 协处理器和加速器
    7. 6.7 备注
  7. 编码器
    1. 7.1 编码器定义
    2. 7.2 编码器类型
    3. 7.3 编码器说明
      1. 7.3.1 线性编码器
      2. 7.3.2 旋转编码器
      3. 7.3.3 位置编码器
      4. 7.3.4 光学编码器
    4. 7.4 绝对编码器与增量编码器
      1. 7.4.1 绝对式旋转编码器
      2. 7.4.2 增量编码器
    5. 7.5 备注
  8. 脉宽调制 (PWM)
    1. 8.1 PWM 定义
    2. 8.2 占空比
    3. 8.3 分辨率
    4. 8.4 死区
    5. 8.5 备注
  9. DAC
    1. 9.1 DAC 定义
    2. 9.2 DAC 误差
      1. 9.2.1 DAC 失调误差
      2. 9.2.2 DAC 增益误差
      3. 9.2.3 DAC 零代码误差
      4. 9.2.4 DAC 满量程误差
      5. 9.2.5 DAC 微分非线性 (DNL)
      6. 9.2.6 DAC 积分非线性 (INL)
      7. 9.2.7 DAC 总体未调误差 (TUE)
    3. 9.3 DAC 输出注意事项
      1. 9.3.1 DAC 线性范围
      2. 9.3.2 DAC 稳定时间
      3. 9.3.3 DAC 负载调节
    4. 9.4 备注
  10. 10数学模型
    1. 10.1 拉普拉斯变换
    2. 10.2 传递函数
    3. 10.3 瞬态响应
    4. 10.4 频率响应
    5. 10.5 Z 域
    6. 10.6 备注
  11. 11重要声明

延迟

控制系统中可能会引入多种类型的延迟,有些是系统的固有延迟,有些则是外部延迟。

定义

时域中的延迟

Equation28. Lf(t-T)

拉普拉斯域中的延迟

Equation29. e-sTfs

延迟幅度

Equation30.  e-iωT= (cosωT)2+(-sinωT)2=1

延迟相位

Equation31. < e-iωT= tan-1-sinωTcosωT= -ωT

延时时间不会影响幅度,因为无论输入频率如何,纯延迟的幅度始终等于 1。不过,随着频率的增加,相位会变得越来越负。如果相位变为负值,则系统可能变得不稳定。

一种用于补偿负相位裕度的方法是减小带宽,但这会导致性能降低。这正是控制环路中的延时时间会对性能和稳定性产生不利影响的原因。

延迟类型包含延迟的闭环传递函数说明
传感器yr=FG1+FGe-sT测量过程输出 y 的传感器会将测量值的传递延迟 T 个时间单位
传动器yr=e-sTFG1+FGe-sT输入可能会在不经过延迟的情况下影响受控体

其中

e-sT = 延迟传递函数