米6体育平台手机版_好二三四详情

Technology family LS Bits (#) 16 Rating Military Operating temperature range (°C) -55 to 125
Technology family LS Bits (#) 16 Rating Military Operating temperature range (°C) -55 to 125
CDIP (J) 16 135.3552 mm² 19.56 x 6.92 CFP (W) 16 69.319 mm² 10.3 x 6.73 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Separate Read/Write Addressing Permits Simultaneous Reading and Writing
  • Fast Access Times…Typically 20 ns
  • Organized as 4 Words of 4 Bits
  • Expandable to 512 Words of n-Bits
  • For Use as:
    • Scratch-Pad Memory
    • Buffer Storage between Processors
    • Bit Storage in Fast Multiplication Designs
  • 3-State Outputs
  • SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

 

  • Separate Read/Write Addressing Permits Simultaneous Reading and Writing
  • Fast Access Times…Typically 20 ns
  • Organized as 4 Words of 4 Bits
  • Expandable to 512 Words of n-Bits
  • For Use as:
    • Scratch-Pad Memory
    • Buffer Storage between Processors
    • Bit Storage in Fast Multiplication Designs
  • 3-State Outputs
  • SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

 

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

 

The SN54LS670 and SN74LS670 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G\W, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G\R, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement — data-entry addressing separate from data-read addressing and individual sense line — eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 128 of these outputs may be bus connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS670 is characterized for operation from 0°C to 70°C.

 

下载 观看带字幕的视频 视频

技术文档

star =有关此米6体育平台手机版_好二三四的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 13
类型 标题 下载最新的英语版本 日期
* 数据表 4-by-4 Register Files With 3-State Outputs 数据表 1988年 3月 1日
* SMD SN54LS670 SMD 7704201EA 2016年 6月 21日
应用手册 Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 2022年 12月 15日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
应用手册 使用逻辑器件进行设计 (Rev. C) 1997年 6月 1日
应用手册 Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
应用手册 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
应用手册 Live Insertion 1996年 10月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

封装 引脚 CAD 符号、封装和 3D 模型
CDIP (J) 16 Ultra Librarian
CFP (W) 16 Ultra Librarian
LCCC (FK) 20 Ultra Librarian

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频