SN74LVC1T45-EP
- Fully Configurable Dual-Rail Design Allows Each Port to
Operate Over the Full 1.65-V to 5.5-V Power-Supply Range - VCC Isolation Feature – If Either VCC Input Is at GND,
Both Ports Are in the High-Impedance State - DIR Input Circuit Referenced to VCCA
- Low Power Consumption, 4-µA Max ICC
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode Operation
- Max Data Rates
- 420 Mbps (3.3-V to 5-V Translation)
- 210 Mbps (Translate to 3.3 V)
- 140 Mbps (Translate to 2.5 V)
- 75 Mbps (Translate to 1.8 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
- SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Military (–55°C/125°C) Temperature Range(1)
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
(1) Additional temperature ranges are available – contact factory
This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.
The SN74LVC1T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.
The SN74LVC1T45 is designed so that the DIR input is powered by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state.
技术文档
设计和开发
如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。
封装 | 引脚 | CAD 符号、封装和 3D 模型 |
---|---|---|
SOT-SC70 (DCK) | 6 | Ultra Librarian |
订购和质量
- RoHS
- REACH
- 器件标识
- 引脚镀层/焊球材料
- MSL 等级/回流焊峰值温度
- MTBF/时基故障估算
- 材料成分
- 鉴定摘要
- 持续可靠性监测
- 制造厂地点
- 封装厂地点