

[Sample &](http://www.ti.com.cn/product/cn/ADS9110?dcmp=dsproject&hqs=sandbuy&#samplebuy) $\frac{1}{2}$ Buy

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

[Reference](http://www.ti.com.cn/tool/TIPD115?dcmp=dsproject&hqs=rd) Design

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015

ADS9110 18 位、**2MSPS**、**15mW SAR ADC**,具有 **multiSPI™** 接口

Technical [Documents](http://www.ti.com.cn/product/cn/ADS9110?dcmp=dsproject&hqs=td&#doctype2)

1 特性 **3** 说明

-
-
- - 型值), ±1.5 LSB (最大值) () 本范围和精度。
	- 微分非线性 (DNL): ±0.75 LSB (最大值) , 18 该器件支持单极全差分模拟输入信号, 并采用 2.5V 至 这
	-
	- 额外进行输入调节。 总谐波失真 (THD):-118dB
- -
	- V_{REF} 输入范围:2.5V 至 5V, (NAP 和 PD)来降低功耗。
 与 AVDD 无关
- -
	-
	-
- multiSPI:增强型串行接口
-
- 在 -40°C 至 +85°C 的工业温度范围内完全额定运 ^行 器件信息
- 小型封装: 4mm × 4mm 超薄四方扁平无引线
(VQFN) 封装

- 测试和测量
- 医疗成像
- 高精度、高速工业领域

Tools & **[Software](http://www.ti.com.cn/product/cn/ADS9110?dcmp=dsproject&hqs=sw&#desKit)**

¹• 采样率:2MSPS ADS9110 是一款 18 位、2MSPS、逐次逼近寄存器 • 无延迟输出 (SAR) 模数转换器 (ADC),在典型工作条件下具有 • 出色的直流和交流性能: ±0.5 LSB INL 和 100dB SNR 规范值。 高吞吐量使得 - 积分非线性 (INL): ±0.5 最低有效位 (LSB) (典 开发者能够对输入信号进行过采样, 从而提高测量的动

Support & **[Community](http://www.ti.com.cn/product/cn/ADS9110?dcmp=dsproject&hqs=support&#community)**

22

5V 的外部基准电压,能够提供宽输入选择范围,无需 – 信噪比 (SNR):100dB

宽输入范围: カランス インスコン インストリング うちゅう あいりょう うちん さんちょう うちん さんちょう かいきょう – 单极差分输入范围: ±VREF 15mW。 吞吐量较低时,可灵活使用低功耗模式

→ AVDD 先入
低功耗: 無功耗: はらの インストラントリング まんだい 年代の可配置功能还能够简化电路板布局、时
- 2MSPS 时为 9mW (仅限 AVDD) カード - カード - メリック - いちまんはかいかかい – 2MSPS 时为 9mW(仅限 AVDD) 序和固件,并且以低时钟速度运行时能够获得高吞吐 量, 因此可轻松连接各种微控制器、数字信号处理器 – 灵活的低功耗模式,可根据吞吐量调节功率 (DSP) 以及现场可编程门阵列 (FPGA)。

符合 JESD8-7A 标准的数字 I/O (1.8V DVDD 时) 该器件采用节省空间的 4mm × 4mm VQFN 封装, 支
车 40°C 至 195°C 的工业沮度范围内完全额完运 持符合 JESD8-7A 标准的 I/O 和标准工业温度范围。

2 应用 (1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

典型应用图以及积分非线性度与代码间的关系图

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, **44** intellectual property matters and other important disclaimers. PRODUCTION DATA.

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

Texas **NSTRUMENTS**

目录

4 修订历史记录

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) www.ti.com.cn ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015

5 Pin Configuration and Functions

Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $⁽¹⁾$ </sup>

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

6.4 Thermal Information

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](http://www.ti.com/cn/lit/pdf/spra953).

6.5 Electrical Characteristics

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for $T_A = -40^{\circ}\text{C}$ to +85°C. All typical values are at $T_A = 25^{\circ}\text{C}$.

(1) Ideal input span, does not include gain or offset errors.

(2) See [Figure](#page-11-1) 9, [Figure](#page-11-1) 10, [Figure](#page-14-0) 25, and [Figure](#page-14-0) 26 for statistical distribution data for INL, DNL, offset, and gain error parameters.

 (3) LSB = least-significant bit. 1 LSB at 18 bits is approximately 3.8 ppm.

(4) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.1 dB below full-scale, unless otherwise specified.

(5) Calculated on the first nine harmonics of the input frequency.

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

Electrical Characteristics (continued)

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = –40°C to +85°C. All typical values are at T_A = 25°C.

(6) As per the JESD8-7A standard. Specified by design; not production tested.

6.6 Timing Requirements: Conversion Cycle

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = –40°C to +85°C. All typical values are at T_A = 25°C. See [Figure](#page-8-0) 1.

(1) See [Figure](#page-27-0) 48.

6.7 Timing Requirements: Asynchronous Reset, NAP, and PD

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = –40°C to +85°C. All typical values are at T_A = 25°C. See [Figure](#page-8-1) 2 and [Figure](#page-9-0) 3.

6.8 Timing Requirements: SPI-Compatible Serial Interface

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for $T_A = -40^{\circ}$ C to +85°C. All typical values are at $T_A = 25^{\circ}$ C. See [Figure](#page-9-1) 4.

6.9 Timing Requirements: Source-Synchronous Serial Interface (External Clock)

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = –40°C to +85°C. All typical values are at T_A = 25°C. See [Figure](#page-10-0) 5.

(1) Other parameters are the same as the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* table.

6.10 Timing Requirements: Source-Synchronous Serial Interface (Internal Clock)

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2 MSPS, unless otherwise noted. All minimum and maximum specifications are for $T_A = -40^{\circ}$ C to +85°C. All typical values are at $T_A = 25^{\circ}$ C. See [Figure](#page-10-1) 6.

(1) Other parameters are the same as the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* table.

Figure 2. Asynchronous Reset Timing Diagram

(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.

Figure 4. SPI-Compatible Serial Interface Timing Diagram

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) www.ti.com.cn ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015

Figure 5. Source-Synchronous Serial Interface Timing Diagram (External Clock)

Figure 6. Source-Synchronous Serial Interface Timing Diagram (Internal Clock)

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

EXAS STRUMENTS

6.11 Typical Characteristics

Typical Characteristics (continued)

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

Typical Characteristics (continued)

Typical Characteristics (continued)

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

EXAS NSTRUMENTS

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The ADS9110 is a high-speed, successive approximation register (SAR), analog-to-digital converter (ADC) based on the charge redistribution architecture. This compact device features high performance at a high throughput rate and at low power consumption.

The ADS9110 supports unipolar, fully-differential analog input signals and operates with a 2.5-V to 5-V external reference, offering a wide selection of input ranges without additional input scaling.

When a conversion is initiated, the differential input between the AINP and AINM pins is sampled on the internal capacitor array. The ADS9110 uses an internal clock to perform conversions. During the conversion process, both analog inputs are disconnected from the internal circuit. At the end of conversion process, the device reconnects the sampling capacitors to the AINP and AINM pins and enters acquisition phase.

The device consumes only 15 mW of power when operating at the full 2-MSPS throughput. Power consumption at lower throughputs can be reduced by using the flexible low-power modes (NAP and PD).

The new multiSPI interface simplifies board layout, timing, and firmware, and achieves high throughput at lower clock speeds, thus allowing easy interface to a variety of microprocessors, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs).

7.2 Functional Block Diagram

From a functional perspective, the device comprises of two modules: the converter module and the interface module, as shown in [Figure](#page-16-3) 36.

The converter module samples and converts the analog input into an equivalent digital output code whereas the interface module facilitates communication and data transfer with the host controller.

Figure 36. Functional Block Diagram

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.3 Feature Description

7.3.1 Converter Module

As shown in [Figure](#page-17-1) 37, the converter module samples the analog input signal (provided between the AINP and AINM pins), compares this signal with the reference voltage (provided between the pair of REFP and REFM pins), and generates an equivalent digital output code.

The converter module receives RST and CONVST inputs from the interface module and outputs the ADCST signal and the conversion result back to the interface module.

Figure 37. Converter Module

7.3.1.1 Sample-and-Hold Circuit

The device supports unipolar, fully-differential analog input signals. [Figure](#page-17-2) 38 shows a small-signal equivalent circuit of the sample-and-hold circuit. Each sampling switch is represented by a resistance (R_{s1} and R_{s2} , typically 30 Ω) in series with an ideal switch (sw₁ and sw₂). The sampling capacitors, C_{s1} and C_{s2}, are typically 60 pF.

Figure 38. Input Sampling Stage Equivalent Circuit

During the acquisition process (in ACQ state), both positive and negative inputs are individually sampled on C_{s1} and C_{s2} , respectively. During the conversion process (in CNV state), the device converts for the voltage difference between the two sampled values: $V_{AINP} - V_{AINM}$.

Each analog input pin has electrostatic discharge (ESD) protection diodes to REFP and GND. Keep the analog inputs within the specified range to avoid turning the diodes on.

Feature Description (continued)

[Equation](#page-18-1) 1 and Equation 2 show the full-scale voltage range (FSR) and common-mode voltage range (V_{CM}) supported at the analog inputs for any external reference voltage (V_{REF}) .

$$
FSR = \pm V_{REF}
$$

\n
$$
V_{CM} = \left(\frac{V_{REF}}{2}\right) \pm 0.1 \text{ V}
$$
 (1)

7.3.1.2 External Reference Source

The input range for the device is set by the external voltage applied at the two REFP pins. The REFM pins function as the reference ground and must be connected to each reference capacitor.

The device takes very little static current from the reference pins in the RST and ACQ states. During the conversion process (in CNV state), binary-weighted capacitors are switched onto the reference pins. The switching frequency is proportional to the conversion clock frequency, but the dynamic charge requirements are a function of the absolute values of the input voltage and the reference voltage. Reference capacitors decouple the dynamic reference loads and a low-impedance reference driver is required to keep the voltage regulated to within 1 LSB.

Most reference sources have very high broadband noise. TI recommends filtering the voltage reference source with a 160-Hz filter before being connected to the reference driver, as shown in [Figure](#page-18-2) 39. See the *[ADC](#page-48-0) [Reference](#page-48-0) Driver* section for reference capacitor and driver selection. Also, the reference inputs are sensitive to board layout; thus, the layout guidelines described in the *[Layout](#page-53-0)* section must be followed.

Figure 39. Reference Driver Schematic

7.3.1.3 Internal Oscillator

The device features an internal oscillator (OSC) that provides the conversion clock; see [Figure](#page-17-1) 37. Conversion duration can vary but is bounded by the minimum and maximum value of t_{conv}, as specified in the [Timing](#page-6-0) *[Requirements:](#page-6-0) Conversion Cycle* table.

The interface module can use this internal clock (OSC) or an external clock (provided by the host controller on the SCLK pin) or a combination of the internal and external clocks for executing the data transfer operations between the device and host controller; see the *[Interface](#page-20-0) Module* section for more details.

Feature Description (continued)

7.3.1.4 ADC Transfer Function

The ADS9110 supports unipolar, fully-differential analog inputs. The device output is in twos compliment format. [Figure](#page-19-0) 40 and [Table](#page-19-1) 1 show the ideal transfer characteristics for the device.

The LSB for the ADC is given by [Equation](#page-19-2) 3:

$$
1 \text{ LSB} = \frac{\text{FSR}}{2^{18}} = 2 \times \frac{V_{REF}}{2^{18}}
$$
\n
$$
\frac{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
$$

Figure 40. Differential Transfer Characteristics

7.3.2 Interface Module

The interface module facilitates the communication and data transfer between the device and the host controller. As shown in [Figure](#page-20-1) 41, the module comprises of shift registers (both input and output), configuration registers, and a protocol unit.

Figure 41. Interface Module

The *Pin [Configuration](#page-2-0) and Functions* section provides descriptions of the interface pins; the *Data [Transfer](#page-25-0) Frame* section details the functions of shift registers, the SCLK counter, and the command processor; the *Data [Transfer](#page-30-0) [Protocols](#page-30-0)* section details supported protocols; and the *[Register](#page-43-0) Maps* section explains the configuration registers and bit settings.

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.4 Device Functional Modes

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

As shown in [Figure](#page-21-1) 42, the device supports three functional states: RST, ACQ, and CNV. The device state is determined by the status of the CONVST and RST control signals provided by the host controller.

Figure 42. Device Functional States

7.4.1 RST State

In the ADS9110, the RST pin is an asynchronous digital input. To enter RST state, the host controller must pull the RST pin low and keep it low for the twl_RST duration (as specified in the *Timing [Requirements:](#page-6-1) Asynchronous [Reset,](#page-6-1) NAP, and PD* table).

In RST state, all configuration registers (see the *[Register](#page-43-0) Maps* section) are reset to their default values, the RVS pins remain low, and the SDO-x pins are tri-stated.

To exit RST state, the host controller must pull the RST pin high with CONVST and SCLK held low and CS held high, as shown in [Figure](#page-21-2) 43. After a delay of t_d _{rst}, the device enters ACQ state and the RVS pin goes high.

Figure 43. Asynchronous Reset

To operate the device in any of the other two states (ACQ or CNV), RST must be held high. With RST held high, transitions on the CONVST pin determine the functional state of the device.

Device Functional Modes (continued)

[Figure](#page-22-0) 44 shows a typical conversion process. An internal signal, ADCST, goes low during conversion and goes high at the end of conversion. With $\overline{\text{CS}}$ held high, RVS reflects the status of ADCST.

Figure 44. Typical Conversion Process

7.4.2 ACQ State

In ACQ state, the device acquires the analog input signal. The device enters ACQ state on power-up, after any asynchronous reset, or after end of every conversion.

An RST falling edge takes the device from an ACQ state to a RST state. A CONVST rising edge takes the device from an ACQ state to a CNV state.

The device offers a low-power NAP mode to reduce power consumption in the ACQ state; see the *NAP [Mode](#page-52-0)* section for more details on NAP mode.

7.4.3 CNV State

The device moves from ACQ state to CNV state on a rising edge of the CONVST pin. The conversion process uses an internal clock and the device ignores any further transitions on the CONVST signal until the ongoing conversion is complete (that is, during the time interval of t_{conv}).

At the end of conversion, the device enters ACQ state. The cycle time for the device is given by [Equation](#page-22-1) 4:

 $t_{\text{cycle-min}} = t_{\text{conv}} + t_{\text{acq-min}}$

(4)

NOTE

The conversion time, t_{conv} , can vary within the specified limits of t_{conv_min} and t_{conv_max} (as specified in the *Timing [Requirements:](#page-6-0) Conversion Cycle* table). After initiating a conversion, the host controller must monitor for a low-to-high transition on the RVS pin or wait for the $t_{conv,max}$ duration to elapse before initiating a new operation (data transfer or conversion). If \overline{RVS} is not monitored, substitute t_{conv} in [Equation](#page-22-1) 4 with t_{conv_max} .

7.5 Programming

The device features four configuration registers (as described in the *[Register](#page-43-0) Maps* section) and supports two types of data transfer operations: *data write* (the host configures the device), and *data read* (the host reads data from the device).

To access the internal configuration registers, the device supports the commands listed in [Table](#page-23-1) 2.

Table 2. Supported Commands

In the ADS9110, any data write to the device is always synchronous to the external clock provided on the SCLK pin. The data read from the device can be synchronized to the same external clock or to an internal clock of the device by programming the configuration registers (see the *Data Transfer [Protocols](#page-30-0)* section for details).

In any data transfer frame, the contents of an internal, 20-bit, output data word are shifted out on the SDO pins. The D[19:2] bits of the 20-bit output data word for any frame (F+1), are determined by the:

- Settings of the DATA_PATN[2:0] bits applicable to frame F+1 (see the [DATA_CNTL](#page-45-0) register) and
- Command issued in frame F

If a valid RD_REG command is executed in frame F, then the D[19:12] bits in frame F+1 reflect the contents of the selected register and the D[11:0] bits are 0s.

If the DATA_PATN[2:0] bits for frame F+1 are set to 1xxb, then the D[19:2] bits in frame F+1 are the fixed data pattern shown in [Figure](#page-23-2) 45.

For all other combinations, the D[19:2] bits for frame F+1 are the latest conversion result.

[Figure](#page-24-0) 46 shows further details of the parity computation unit illustrated in [Figure](#page-23-2) 45.

Figure 46. Parity Bits Computation

With the PAR_EN bit set to 0, the D[1] and D[0] bits of the output data word are set to 0 (default configuration).

When the PAR_EN bit is set to 1, the device calculates the parity bits (FLPAR and FTPAR) and appends them as bits D[1] and D[0].

- FLPAR is the even parity calculated on bits D[19:2].
- FTPAR is the even parity calculated on the bits defined by FPAR_LOC[1:0].

See the [DATA_CNTL](#page-45-0) register for more details on the FPAR_LOC[1:0] bit settings.

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.5.1 Data Transfer Frame

A data transfer frame between the device and the host controller is bounded between a $\overline{\text{CS}}$ falling edge and the subsequent CS rising edge. The host controller can initiate a data transfer frame (as shown in [Figure](#page-25-1) 47) at any time irrespective of the status of the CONVST signal; however, the data read during such a data transfer frame is a function of relative timing between the CONVST and \overline{CS} signals.

Figure 47. Data Transfer Frame

For this discussion, assume that the CONVST signal remains low.

For a typical data transfer frame F:

- 1. The host controller pulls \overline{CS} low to initiate a data transfer frame. On the \overline{CS} falling edge:
	- RVS goes low, indicating the beginning of the data transfer frame.
	- The SCLK counter is reset to 0.
	- The device takes control of the data bus. As shown in [Figure](#page-25-1) 47, the 20-bit contents of the output data word (see [Figure](#page-23-2) 45) are loaded in to the 20-bit OSR (see [Figure](#page-20-1) 41).
	- The 20-bit ISR (see [Figure](#page-20-1) 41) is reset to 00000h, corresponding to a NOP command.

NSTRUMENTS

- 2. During the frame, the host controller provides clocks on the SCLK pin:
	- On each SCLK capture edge, the SCLK counter is incremented and the data bit received on the SDI pin is shifted in to the ISR.
	- On each launch edge of the output clock (SCLK in this case), OSR data are shifted out on the selected SDO-x pins.
	- The status of the RVS pin depends on the output protocol selection (see the *[Protocols](#page-32-0) for Reading From the [Device](#page-32-0)* section).
- 3. The host controller pulls \overline{CS} high to end the data transfer frame. On the \overline{CS} rising edge:
	- The SDO-x pins go to tri-state.
	- RVS goes high (after a delay of $t_{\rm d-RVS}$).
	- As illustrated in [Figure](#page-25-1) 47, the 20-bit contents of the ISR are transferred to the command processor (see [Figure](#page-20-1) 41) for decoding and further action.

After pulling \overline{CS} high, the host controller must monitor for a low-to-high transition on the RVS pin or wait for the t_{d RVS} time (see the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* table) to elapse before initiating a new operation (data transfer or conversion). The delay, $t_{\rm d-RVS}$, for any data transfer frame F varies based on the data transfer operation executed in the frame F.

At the end of the data transfer frame F:

- If the SCLK counter is < 20, then the device treats the frame F as a *short* data transfer frame. The output data bits transferred during such a short data transfer frame are still valid data; however, the device ignores the data received over the SDI pin (similar to a no operation command). The host controller can use these short data transfer frames to read only the required number of MSB bits from the 20-bit output data word.
- If the SCLK counter = 20, then the device treats the frame F as a *optimal* data transfer frame. At the end of an optimal data transfer frame, the command processor treats the 20-bit contents of the ISR as a valid command word.
- If the SCLK counter > 20, then the device treats the frame F as a *long* data transfer frame. At the end of a long data transfer frame, the command processor treats the 20-bit contents of the ISR as a valid command word. There is no restriction on the maximum number of clocks that can be provided within any data transfer frame F. However, when the host controller provides a long data transfer frame, the last 20 bits shifted into the device prior to the \overline{CS} rising edge must constitute the desired command.

NOTE

This example shows a data transfer synchronous to the external clock provided on the SCLK pin. The device also supports data transfer operations that are synchronous to the internal clock; see the *[Protocols](#page-32-0) for Reading From the Device* section for more details.

7.5.2 Interleaving Conversion Cycles and Data Transfer Frames

The host controller can operate the ADS9110 at the desired throughput by interleaving the conversion cycles and the data transfer frames.

The cycle time of the device, t_{cycle} , is the time difference between two consecutive CONVST rising edges provided by the host controller. The response time of the device, t_{resp}, is the time difference between the host controller initiating a conversion C and the host controller receiving the complete result for conversion C.

[Figure](#page-27-0) 48 shows three conversion cycles, C, C+1, and C+2. Conversion C is initiated by a CONVST rising edge at the t = 0 time and the conversion result becomes a<u>vail</u>able for data transf<u>er a</u>t the t_{conv} time. However, this result is loaded into the OSR only on the subsequent CS falling edge. This CS falling edge must be provided before the completion of the conversion C+1 (that is, before the $t_{\text{cycle}} + t_{\text{conv}}$ time).

To achieve the rated performance specifications, the host controller must ensure that no digital signals toggle during the quiet acquisition time (t_{qt_acq}) and quiet aperture time (t_{d_cnvcap}). Any noise during t_{d_cnvcap} can negatively affect the result of the ongoing conversion whereas any noise during $t_{gt\, a c q}$ can negatively affect the result of the subsequent conversion.

Figure 48. Data Transfer Zones

This architecture allows for two distinct time zones (zone1 and zone2) to transfer data for each conversion. Zone1 and zone2 for conversion C are defined in [Table](#page-27-1) 3.

The response time includes the conversion time and the data transfer time, and is thus a function of the data transfer zone selected.

[Figure](#page-28-0) 49 and [Figure](#page-28-1) 50 illustrate interleaving of three conversion cycles (C, C+1, and C+2) with three data transfer frames (F, F+1, and F+2) in zone1 and in zone2, respectively.

To achieve cycle time, t_{cycle} , the read time in zone1 is given by [Equation](#page-29-0) 5:

$$
t_{read-Z1} \leq t_{cycle} - t_{conv} - t_{qt_acq}
$$

For an optimal data transfer frame, [Equation](#page-29-0) 5 results in an SCLK frequency given by [Equation](#page-29-1) 6:

$$
f_{SCLK} \ge \frac{20}{t_{read-21}}
$$
\n1, the zone1 data transfer achieves a response time defined by Equation 7:

\n
$$
t_{resp-71-min} = t_{conv} + t_{read-71}
$$
\n(6)

Then, the zone1 data transfer achieves a response time defined by [Equation](#page-29-2) 7:

$$
t_{resp-Z1-min} = t_{conv} + t_{read-Z1}
$$

t_{resp-Z1-min} = t_{conv} + t_{read-Z1}
i example, while operating
inse time of 1 µs provided
esponse time, the SCLK fre
that the device does not
ing in slower response time,
t_{read-Z2} ≤ t_{cycle} – t_{d cnycan} – t As an example, while operating the ADS9110 at its full throughput of 2 MSPS, the host controller can achieve a response time of 1 µs provided that the data transfer in zone1 is completed within 135 ns. However, to achieve this response time, the SCLK frequency must be greater than 148 MHz.

Note that the device does not support such high SCLK speeds. At lower SCLK speeds, $t_{\text{read-71}}$ increases, resulting in slower response times and higher cycle times.

To achieve the same cycle time, t_{cycle} , the read time in zone2 is given by [Equation](#page-29-3) 8:

 $t_{\text{read-Z2}} \leq t_{\text{cycle}} - t_{\text{d_cnvcap}} - t_{\text{qt_acq}}$

For an optimal data transfer frame, [Equation](#page-29-3) 8 results in an SCLK frequency given by [Equation](#page-29-4) 9:

Then, the zone2 data transfer achieves a response time defined by [Equation](#page-29-5) 10:

As an example, the host controller can operate the ADS9110 at its full throughput of 2 MSPS using zone2 data transfer with a 43 MHz SCLK (and a read time of 465 ns). However, zone2 data transfer will result in response time of nearly 2 µs.

Any increase in $t_{\text{read-}Z2}$ increases response time and can increase cycle time.

For a given cycle time, the zone1 data transfer clearly achieves faster response time but also requires a higher SCLK speed (as evident from [Equation](#page-29-0) 5, [Equation](#page-29-1) 6, and [Equation](#page-29-2) 7), whereas the zone2 data transfer clearly requires a lower SCLK speed but supports slower response time (as evident from [Equation](#page-29-3) 8, [Equation](#page-29-4) 9, and [Equation](#page-29-5) 10).

NOTE

In zone2, the data transfer is active when the device is converting for the next analog sample. This digital activity can interfere with the ongoing conversion and cause some degradation in SNR performance.

Additionally, a data transfer frame can begin in zone1 and then extend into zone2; however, the host controller must ensure that no digital transitions occur during the $t_{gt, qca}$ and t_{d_cnvcap} time intervals.

(8)

(5)

(7)

(10)

7.5.3 Data Transfer Protocols

The device features a multiSPI interface that allows the host controller to operate at slower SCLK speeds and still achieve the required cycle time with a faster response time. The multiSPI interface module offers two options to reduce the SCLK speed required for data transfer:

- 1. An option to increase the width of the output data bus
- 2. An option to enable double data rate (DDR) transfer

These two options can be combined to achieve further reduction in SCLK speed.

[Figure](#page-30-1) 51 shows the delays between the host controller and the device in a typical serial communication.

Figure 51. Delays in Serial Communication

The total delay in the path is given by [Equation](#page-30-2) 11:

$$
t_{d_total_serial} = t_{pcb_CK} + t_{d_iso} + t_{d_ckdo} + t_{d_iso} + t_{pcb_SDO} + t_{su_h}
$$

In a standard SPI protocol, the host controller and the device launch and capture data bits on alternate SCLK edges. Therefore, the t_{d_total_serial} delay must be kept less than half of the SCLK duration. [Equation](#page-30-3) 12 shows the fastest clock allowed by the SPI protocol.

$$
f_{\text{clk-SPI}} \le \frac{1}{2 \times t_{\text{d_total-serial}}} \tag{12}
$$

Larger values of the $t_{d_total_serial}$ delay restrict the maximum SCLK speed for the SPI protocol, resulting in higher read and response times, and can increase cycle times. To remove this restriction on the SCLK speed, the multiSPI interface module supports an *ADC-master* or *source-synchronous* mode of operation.

(11)

As illustrated in [Figure](#page-30-4) 52, in ADC-master or source-synchronous mode, the device provides a synchronous output clock (on the RVS pin) along with the output data (on the SDO-x pins).

For a source-synchronous data transfer, the total delay in the path is given by [Equation](#page-31-0) 13:

 $t_{\rm d_total_srcsync} = t_{\rm pcb_RVS} - t_{\rm pcb_SDO} + t_{\rm su_h}$

As illustrated in [Equation](#page-30-2) 11 and [Equation](#page-31-0) 13, the ADC-master or source-synchronous mode completely eliminates the affect of isolator delays and the clock-to-data delays, which are typically the largest contributors in the overall delay computation.

Furthermore, the actual values of t_{pcb_RVS} and t_{pcb_SDO} do not matter. In most cases, the $t_{d_total_Srcsync}$ delay can be kept at a minimum by routing the RVS and SDO lines together on the PCB. Therefore, the ADC-master or source-synchronous mode allows the host controller and device to operate at much higher SCLK speeds.

7.5.3.1 Protocols for Configuring the Device

As shown in [Table](#page-31-1) 4, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-01-S, SPI-10-S, or SPI-11-S) to write data in to the device.

Table 4. SPI Protocols for Configuring the Device

On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data read and data write operations.

To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in the [SDI_CNTL](#page-43-1) register. This first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to the newly selected protocol.

[Figure](#page-32-1) 53, [Figure](#page-32-1) 54, [Figure](#page-32-2) 55, and [Figure](#page-32-2) 56 detail the four protocols using an optimal, 20-SCLK frame; see the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* section for associated timing parameters.

NOTE

As explained in the *Data [Transfer](#page-25-0) Frame* section, a valid write operation to the device requires a minimum of 20 SCLKs to be provided within a data transfer frame.

(13)

www.ti.com.cn ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015

7.5.3.2 Protocols for Reading From the Device

The protocols for the data read operation can be broadly classified into three categories:

- 1. Legacy, SPI-compatible (SPI-xy-S) protocols,
- 2. SPI-compatible protocols with bus width options (SPI-xy-D and SPI-xy-Q), and
- 3. Source-synchronous (SRC) protocols

7.5.3.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols

As shown in [Table](#page-32-3) 5, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-01-S, SPI-10-S, or SPI-11-S) to read data from the device.

PROTOCOL	SCLK POLARITY (At CS Falling Edge)	SCLK PHASE (Capture Edge)	MSB BIT LAUNCH EDGE	SDI CNTL	SDO CNTL	DIAGRAM
SPI-00-S	Low	Rising	$\overline{\text{CS}}$ falling	00h	00h	Figure 57
SPI-01-S	Low	Falling	1 st SCLK rising	01h	00h	Figure 58
SPI-10-S	High	Falling	CS falling	02h	00h	Figure 59
SPI-11-S	High	Rising	1 st SCLK falling	03h	00h	Figure 60

Table 5. SPI Protocols for Reading From the Device

On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data read and data write operations. To select a different SPI-compatible protocol for both the data transfer operations:

- 1. Program the SDI_MODE[1:0] bits in the [SDI_CNTL](#page-43-1) register. This first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to the newly selected protocol.
- 2. Set the SDO_MODE[1:0] bits = 00b in the [SDO_CNTL](#page-44-0) register.

When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame; see the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* table for associated timing parameters.

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

[Figure](#page-33-0) 57, [Figure](#page-33-0) 58, [Figure](#page-33-1) 59, and [Figure](#page-33-1) 60 explain the details of the four protocols using an optimal, 20- SCLK frame. As explained in the *Data [Transfer](#page-25-0) Frame* section, the host controller can use a *short* data transfer frame to read only the required number of MSB bits from the 20-bit output data word.

With SDO_CNTL[7:0] = 00h, if the host controller uses a long data transfer frame, the device exhibits daisy-chain operation (see the *Multiple Devices: [Daisy-Chain](#page-40-0) Topology* section).

7.5.3.2.2 SPI-Compatible Protocols with Bus Width Options

The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual SDO) or to four bits (quad SDO) when operating with any of the four legacy, SPI-compatible protocols.

Set the SDO_WIDTH[1:0] bits in the [SDO_CNTL](#page-44-0) register to select the SDO bus width.

In dual SDO mode (SDO WIDTH $[1:0] = 10b$), two bits of data are launched on the two SDO pins (SDO-0 and SDO-1) on every SCLK launch edge.

In quad SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0, SDO-1, SDO-2, and SDO-3) on every SCLK launch edge.

The SCLK launch edge depends upon the SPI protocol selection (as shown in [Table](#page-33-2) 6).

PROTOCOL	SCLK POLARITY (At CS Falling Edge)	SCLK PHASE (Capture Edge)	MSB BIT LAUNCH EDGE	SDI CNTL	SDO CNTL	DIAGRAM
SPI-00-D	Low	Rising	$\overline{\text{CS}}$ falling	00h	08h	Figure 61
SPI-01-D	Low	Falling	First SCLK rising	01h	08h	Figure 62
SPI-10-D	High	Falling	$\overline{\text{CS}}$ falling	02 _h	08h	Figure 63
SPI-11-D	High	Rising	First SCLK falling	03h	08h	Figure 64
SPI-00-Q	Low	Rising	$\overline{\text{CS}}$ falling	00h	0Ch	Figure 65
SPI-01-Q	Low	Falling	First SCLK rising	01h	0Ch	Figure 66
SPI-10-Q	High	Falling	$\overline{\text{CS}}$ falling	02 _h	0Ch	Figure 67
SPI-11-Q	High	Rising	First SCLK falling	03h	0Ch	Figure 68

Table 6. SPI-Compatible Protocols with Bus Width Options

When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame.

[Figure](#page-34-0) 61 to [Figure](#page-35-0) 68 illustrate how the wider data bus allows the host controller to read all 20 bits of the output data word using *short* data transfer frames; see the *Timing Requirements: [SPI-Compatible](#page-6-2) Serial Interface* table for associated timing parameters.

NOTE With SDO CNTL[7:0] \neq 00h, a long data transfer frame does not result in daisy-chain operation.

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.5.3.2.3 Source-Synchronous (SRC) Protocols

As described in the *Data Transfer [Protocols](#page-30-0)* section, the multiSPI interface supports an ADC-master or sourcesynchronous mode of data transfer between the device and host controller. In this mode, the device provides an output clock that is synchronous with the output data. Furthermore, the host controller can also select the output clock source, data bus width, and data transfer rate.

7.5.3.2.3.1 Output Clock Source Options with SRC Protocols

In all SRC protocols, the RVS pin provides the output clock. The device allows this output clock to be synchronous to either the external clock provided on the SCLK pin or to the internal clock of the device. Furthermore, this internal clock can be divided by a factor of two or four to lower the data rates.

As shown in [Figure](#page-35-1) 69, set the SSYNC_CLK_SEL[1:0] bits in the [SDO_CNTL](#page-44-0) register to select the output clock source.

Figure 69. Output Clock Source options with SRC Protocols

7.5.3.2.3.2 Bus Width Options with SRC Protocols

The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual SDO) or to four bits (quad SDO) when operating with any of the SRC protocols. Set the SDO_WIDTH[1:0] bits in the SDO CNTL register to select the SDO bus width.

In dual SDO mode (SDO_WIDTH $[1:0] = 10b$), two bits of data are launched on the two SDO pins (SDO-0 and SDO-1) on every SCLK rising edge.

In quad SDO mode (SDO_WIDTH $[1:0] = 11b$), four bits of data are launched on the four SDO pins (SDO-0, SDO-1, SDO-2, and SDO-3) on every SCLK rising edge.

7.5.3.2.3.3 Output Data Rate Options with SRC Protocols

The device provides an option to transfer the data to the host controller at single data rate (default, SDR) or at double data rate (DDR). Set the DATA_RATE bit in the [SDO_CNTL](#page-44-0) register to select the data transfer rate.

In SDR mode (DATA_RATE = 0b), the RVS pin toggles from low to high and the output data bits are launched on the SDO pins on the output clock rising edge.

In DDR mode (DTA_RATE = 1b), the RVS pin toggles and the output data bits are launched on the SDO pins on every output clock edge, starting with the first rising edge.

The device supports all 24 combinations of output clock source, bus width, and output data rate, as shown in [Table](#page-36-0) 7.

Table 7. SRC Protocol Combinations

EXAS NSTRUMENTS

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

www.ti.com.cn ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.5.4 Device Setup

The multiSPI interface and the device configuration registers offer multiple operation modes. This section describes how to select the hardware connection topology to meet different system requirements.

7.5.4.1 Single Device: All multiSPI Options

[Figure](#page-39-0) 82 shows the connections between a host controller and a stand-alone device to exercise all options provided by the multiSPI interface.

Figure 82. MultiSPI Interface, All Pins

7.5.4.2 Single Device: Minimum Pins for a Standard SPI Interface

[Figure](#page-39-1) 83 shows the minimum-pin interface for applications using a standard SPI protocol.

Figure 83. SPI Interface, Minimum Pins

The CS, SCLK, SDI, and SDO-0 pins constitute a standard SPI port of the host controller. The CONVST pin can be tied to \overline{CS} , or can be controlled independently for additional timing flexibility. The RST pin can be tied to DVDD. The RVS pin can be monitored for timing benefits. The SDO-1, SDO-2, and SDO-3 pins have no external connections.

7.5.4.3 Multiple Devices: Daisy-Chain Topology

A typical connection diagram showing multiple devices in a daisy-chain topology is shown in [Figure](#page-40-1) 84.

Figure 84. Daisy-Chain Connection Schematic

The CONVST, CS, and SCLK inputs of all devices are connected together and controlled by a single CONVST, CS, and SCLK pin of the host controller, respectively. The SDI input pin of the first device in the chain (Device-1) is connected to the SDO pin of the host controller, the SDO-0 output pin of Device-1 is connected to the SDI input pin of Device-2, and so forth. The SDO-0 output pin of the last device in the chain (Device-N) is connected to the SDI pin of the host controller.

To operate multiple devices in a daisy-chain topology, the host controller must program the configuration registers in each device with identical values and must operate with any of the legacy, SPI-compatible protocols for data read and data write operations (SDO CNT[7:0] = 00h). With these configurations settings, the 20-bit OSR and 20-bit ISR registers collapse to form a single, 20-bit unified shift register (USR), as shown in [Figure](#page-40-2) 85.

Figure 85. Unified Shift Register Schematic

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

NSTRUMENTS

EXAS

All devices in the daisy-chain topology sample their analog input signals on the CONVST rising edge. The data transfer frame starts with a CS falling edge. On each SCLK launch edge, every device in the chain shifts out the MSB of its USR on to its SDO-0 pin. On every SCLK capture edge, each device in the chain shifts in data received on its SDI pin as the LSB bit of its USR. Therefore, in a daisy-chain configuration, the host controller receives the data of Device-N, followed by the data of Device-N-1, and so forth (in MSB-first fashion). On the CS rising edge, each device decodes the contents in its USR and takes appropriate action.

A typical timing diagram for three devices connected in daisy-chain topology and using the SPI-00-S protocol is shown in [Figure](#page-41-0) 86.

For N devices connected in daisy-chain topology, an optimal data transfer frame must contain 20 \times N SCLK capture edges. For a longer data transfer frame, the host controller must appropriately align the configuration data for each device before bringing CS high. A shorter data transfer frame can result in an erroneous device configuration, and *must be avoided*.

Note that the overall throughput of the system is proportionally reduced with the number of devices connected in a daisy-chain topology.

7.5.4.4 Multiple Devices: Star Topology

A typical connection diagram showing multiple devices in the star topology is shown in [Figure](#page-42-0) 87. The CONVST, SDI, and SCLK inputs of all devices are connected together and are controlled by a single CONVST, SDO, and SCLK pin of the host controller, respectively. Similarly, the SDO output pin of all devices are tied together and connected to the a single SDI input pin of the host controller. The \overline{CS} input pin of each device is individually controlled by separate CS control lines from the host controller.

Figure 87. Star Topology Connection Schematic

The timing diagram for N devices connected in the star topology is shown in [Figure](#page-42-1) 88. In order to avoid any conflict related to multiple devices driving the SDO line at the same time, ensure that the host controller pulls down the CS signal for only one device at any particular time.

Figure 88. Three Devices Connected in Star Connection Timing Diagram

7.6 Register Maps

7.6.1 Device Configuration and Register Maps

The device features four configuration registers, mapped as described in [Table](#page-43-2) 8.

Table 8. Configuration Registers Mapping

7.6.1.1 PD_CNTL Register (address = 010h)

This register controls the low-power modes offered by the device and is protected using a key.

Any writes to the PD_CNTL register must be preceded by a write operation with the register address set to 011h and the register data set to 69h.

Figure 89. PD_CNTL Register

LEGEND: $R/W = Read/Write$; $R = Read$ only; -n = value after reset

Table 9. PD_CNTL Register Field Descriptions

7.6.1.2 SDI_CNTL Register (address = 014h)

This register configures the protocol used for writing data into the device.

Figure 90. SDI_CNTL Register

LEGEND: $R/W = Read/Write$; $R = Read$ only; -n = value after reset

Table 10. SDI_CNTL Register Field Descriptions

7.6.1.3 SDO_CNTL Register (address = 018h)

This register configures the protocol for reading data from the device.

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

7.6.1.4 DATA_CNTL Register (address = 01Ch)

This register configures the contents of the 20-bit output data word (D[19:0]).

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The two primary circuits required to maximize the performance of a high-precision, successive approximation register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This section details some general principles for designing these circuits, followed by an application circuit designed using the ADS9110.

8.1.1 ADC Input Driver

The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel RC filter. The amplifier is used for signal conditioning of the input signal and its low output impedance provides a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an antialiasing filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is critical to meet the linearity and noise performance of the ADS9110.

8.1.2 Input Amplifier Selection

Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate amplifier to drive the inputs of the ADC are:

• *Small-signal bandwidth.* Select the small-signal bandwidth of the input amplifiers to be as high as possible after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter (see the *[Antialiasing](#page-47-0) Filter* section) at the inputs of the ADC. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. In order to maintain the overall stability of the input driver circuit, select the amplifier with Unity Gain Bandwidth (UGB) as described in [Equation](#page-46-2) 14:

$$
UGB \ge 4 \times \left(\frac{1}{2\pi \times R_{FLT} \times C_{FLT}}\right) \tag{14}
$$

• *Noise.* Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in SNR performance of the system. Generally, to ensure that the noise performance of the data acquisition system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-limited by designing a low cutoff frequency RC filter, as explained in [Equation](#page-46-3) 15.

$$
N_G \times \sqrt{2} \times \sqrt{\left(\frac{V_{\text{11-AMP_PP}}}{6.6}\right)^2 + e_{n_RMS}^2 \times \frac{\pi}{2} \times f_{-3dB}} \leq \frac{1}{5} \times \frac{V_{REF}}{\sqrt{2}} \times 10^{-\left(\frac{SNR(dB)}{20}\right)}
$$

where:

- V_{1 / f AMP pp is the peak-to-peak flicker noise in μV ,
- e_{n RMS} is the amplifier broadband noise density in nV/ \sqrt{Hz} ,
- f_{-3dB} is the 3-dB bandwidth of the RC filter, and
- N_G is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration. (15)
- *Distortion.* Both the ADC and the input driver introduce distortion in a data acquisition block. To ensure that the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC, as shown in [Equation](#page-46-4) 16.

$$
\text{THD}_{\text{AMP}} \leq \text{THD}_{\text{ADC}} - 10 \text{ (dB)}
$$

Copyright © 2015, Texas Instruments Incorporated 47 and 47 a

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110)

ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

Application Information (continued)

• *Settling Time.* For dc signals with fast transients that are common in a multiplexed application, the input signal must settle within an 18-bit accuracy at the device inputs during the acquisition time window. This condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 18-bit accuracy. Therefore, always verify the settling behavior of the input driver by TINA™-SPICE simulations before selecting the amplifier.

8.1.3 Antialiasing Filter

Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher-frequency content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency spectrum. This process is called *aliasing*. Therefore, an analog, antialiasing filter must be used to remove the harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a low-pass, RC filter, where the 3-dB bandwidth is optimized based on specific application requirements. For dc signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow accurately settling the signal at the inputs of the ADC during the small acquisition time window. For ac signals, keep the filter bandwidth low to band-limit the noise fed into the input of the ADC, thereby increasing the signalto-noise ratio (SNR) of the system.

Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, C_{F1T} , is connected from each input pin of the ADC to the ground (as shown in [Figure](#page-47-1) 93). This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during the acquisition process. Generally, the value of this capacitor must be at least 15 times the specified value of the ADC sampling capacitance. For the ADS9110, the input sampling capacitance is equal to 60 pF, thus it is recommeded to keep C_{FLT} greater than 900 pF. The capacitor must be a COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying voltages, frequency, and time.

Figure 93. Antialiasing Filter Configuration

Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (R_{FIT}) are used at the output of the amplifiers. A higher value of R_{FIT} is helpful from the amplifier stability perspective, but adds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal frequency, and input signal amplitude. Therefore, the selection of R_{FLT} requires balancing the stability and distortion of the design. For the ADS9110, limiting the value of R_{FLT} to a maximum of 10-Ω is recommended in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors must be kept less than 1% to keep the inputs balanced.

The driver amplifier must be selected such that its closed-loop output impedance is at least 5X lesser than the R_{FLT} .

Application Information (continued)

8.1.4 ADC Reference Driver

The external reference source to the ADS9110 must provide low-drift and very accurate voltage for the ADC reference input and support the dynamic charge requirements without affecting the noise and linearity performance of the device. The output broadband noise of most references can be in the order of a few hundred μV_{RMS} . Therefore, to prevent any degradation in the noise performance of the ADC, the output of the voltage reference must be appropriately filtered by using a low-pass filter with a cutoff frequency of a few hundred hertz.

After band-limiting the noise of the reference circuit, the next important step is to design a reference buffer that can drive the dynamic load posed by the reference input of the ADC. The reference buffer must regulate the voltage at the reference pin such that the value of V_{REF} stays within the 1-LSB error at the start of each conversion. This condition necessitates the use of a large capacitor, CBUF_FLT (see [Figure](#page-18-2) 39), between each pair of REFP and REFM pins for regulating the voltage at the reference input of the ADC. The effective capacitance of any large capacitor reduces with the applied voltage based on the voltage rating and type. Using X7R-type capacitors is strongly recommended.

The amplifier selected as the reference driver must have an extremely low offset and temperature drift with a low output impedance to drive the capacitor at the ADC reference pins without any stability issues.

[ADS9110](http://www.ti.com.cn/product/cn/ads9110?qgpn=ads9110) ZHCSE95A –OCTOBER 2015–REVISED OCTOBER 2015 **www.ti.com.cn**

8.2 Typical Application

Figure 94. Differential Input DAQ Circuit for Lowest Distortion and Noise at 2 MSPS

8.2.1 Design Requirements

Design an application circuit optimized for using the ADS9110 to achieve:

- \bullet > 98.5-dB SNR, < -118-dB THD,
- ±1-LSB linearity, and
- Maximum-specified throughput of 2 MSPS

Typical Application (continued)

8.2.2 Detailed Design Procedure

The application circuits are illustrated in [Figure](#page-49-1) 94. For simplicity, power-supply decoupling capacitors are not shown in these circuit diagrams; see the *Power-Supply [Recommendations](#page-51-0)* section for suggested guidelines.

The input signal is processed through the [OPA625](http://www.ti.com/product/opa625) (a high-bandwidth, low-distortion, high-precision amplifier in an inverting gain configuration) and a low-pass RC filter before being fed into the ADC. Generally, the distortion from the input driver must be at least 10 dB less than the ADC distortion. The distortion resulting from variation in the common-mode signal is eliminated by using the OPA625 in an inverting gain configuration. The low-power OPA625 as an input driver provides exceptional ac performance because of its extremely low-distortion and highbandwidth specifications. To exercise the complete dynamic range of the ADS9110, the common-mode voltage at the ADS9110 inputs is established at a value of 2.25 V (4.5 V / 2) by using the noninverting pins of the OPA625 amplifiers.

In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low without adding distortion to the input signal.

The reference driver circuit, illustrated in [Figure](#page-49-1) 94, generates a voltage of 4.5 V_{DC} using a single 5-V supply. This circuit is suitable to drive the reference of the ADS9110 at higher sampling rates up to 2 MSPS. The reference voltage of 4.5 V in this design is generated by the high-precision, low-noise [REF5045](http://www.ti.com/product/ref5045) circuit. The output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz.

The reference buffer is designed with the OPA625 and [OPA378](http://www.ti.com/product/opa378) in a composite architecture to achieve superior dc and ac performance at a reduced power consumption, compared to using a single high-performance amplifier. The OPA625 is a high-bandwidth amplifier with a very low open-loop output impedance of 1 Ω up to a frequency of 1 MHz. The low open-loop output impedance makes the OPA625 a good choice for driving a high capacitive load to regulate the voltage at the reference input of the ADC. The relatively higher offset and drift specifications of the OPA625 are corrected by using a dc-correcting amplifier (the OPA378) inside the feedback loop. The composite scheme inherits the extremely low offset and temperature drift specifications of the OPA378.

8.2.3 Application Curves

9 Power-Supply Recommendations

The device has two separate power supplies: AVDD and DVDD. The internal circuits of the device operate on AVDD; DVDD is used for the digital interface. AVDD and DVDD can be independently set to any value within the permissible range.

9.1 Power-Supply Decoupling

The AVDD and DVDD supply pins cannot share the same decoupling capacitor. As shown in [Figure](#page-51-3) 97, separate 1-μF ceramic capacitors are recommended. These capacitors avoid digital and analog supply crosstalk resulting from dynamic currents during conversion and data transfer.

Figure 97. Supply Decoupling

9.2 Power Saving

In normal mode of operation, the device does not power down between conversions, and therefore achieves a high throughput of 2 MSPS. However, the device offers two programmable low-power modes (NAP and PD) to reduce power consumption when the device is operated at lower throughput rates. [Figure](#page-51-4) 98 shows comparative power consumption between the different modes of the device.

Figure 98. Power Consumption in Different Operating Modes

Power Saving (continued)

9.2.1 NAP Mode

In NAP mode, some of the internal blocks of the device power down to reduce power consumption in the ACQ state.

To enable NAP mode, set the NAP_EN bit in the PD_CNTL register. To exercise NAP mode, keep the CONVST pin high at the end of conversion process. The device then enters NAP mode at the end of conversion and continues in NAP mode until the CONVST pin is held high.

A CONVST falling edge brings the device out of NAP mode; however, the host controller can initiate a new conversion (CONVST rising edge) only after the $t_{\text{nap wkup}}$ time has elapsed.

[Figure](#page-52-1) 99 shows a typical conversion cycle with NAP mode enabled (NAP = 1b).

Figure 99. NAP Enabled Conversion Cycle

The cycle time is given by [Equation](#page-52-2) 17.

$$
t_{\text{cycle}} = t_{\text{conv}} + t_{\text{nap}} + t_{\text{nap_wkup}}
$$

(17)

At lower throughputs, cycle time (t_{cycle}) increases but the conversion time (t_{conv}) remains constant, and therefore the device spends more time in NAP mode, thus giving power scaling with throughput as shown in [Figure](#page-52-3) 100.

Power Saving (continued)

9.2.2 PD Mode

The device also features a deep power-down mode (PD) to reduce the power consumption at very low throughput rates.

To enter PD mode:

- 1. Write 069h to address 011h to unlock the PD CNTL register.
- 2. Set the PDWN bit in the [PD_CNTL](#page-43-4) register. The device enters PD mode on the CS rising edge.

In PD mode, all analog blocks within the device are powered down; however, the interface remains active and the register contents are also retained. The RVS pin is high, indicating that the device is ready to receive the next command.

To exit PD mode:

- 1. Reset the PDWN bit in the PD CNTL register.
- 2. The RVS pin goes high, indicating that the device has started coming out of PD mode. However, the host controller must wait for the t_{PWRUP} time to elapse before initiating a new conversion.

10 Layout

10.1 Layout Guidelines

This section provides some recommended layout guidelines for achieving optimum performance with the ADS9110 device.

10.1.1 Signal Path

As illustrated in [Figure](#page-54-1) 101, the analog input and reference signals are routed in opposite directions to the digital connections. This arrangement prevents noise generated by digital switching activity from coupling to sensitive analog signals.

10.1.2 Grounding and PCB Stack-Up

Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1 nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner layers to minimize via length to ground.

Pins 11 and 15 of the ADS9110 can be easily grounded with very low inductance by placing at least four 8-mil grounding vias at the ADS9110 thermal pad. Afterwards, pins 11 and 15 can be connected directly to the grounded thermal path.

10.1.3 Decoupling of Power Supplies

Place the AVDD and DVDD supply decoupling capacitors within 20 mil from the supply pins and use a 15-mil via to ground from each capacitor. Avoid placing vias between any supply pin and its decoupling capacitor.

10.1.4 Reference Decoupling

Dynamic currents are also present at the REFP and REFM pins during the conversion phase and excellent decoupling is required to achieve optimum performance. Three 10-μF, X7R-grade, ceramic capacitors with 10-V rating are recommended, placed as illustrated in [Figure](#page-54-1) 101. Select 0603- or 0805-size capacitors to keep ESL low. The REFM pin of each pair must be connected to the decoupling capacitor before a ground via.

10.1.5 Differential Input Decoupling

Dynamic currents are also present at the differential analog inputs of the ADS9110. C0G- or NPO-type capacitors are required to decouple these inputs because their capacitance stays almost constant over the full input voltage range. Lower quality capacitors (such as X5R and X7R) have large capacitance changes over the full input voltage range that can cause degradation in the performance of the ADS9110.

10.2 Layout Example

Figure 101. Recommended Layout

Texas **NSTRUMENTS**

11 器件和文档支持

- **11.1** 文档支持
- **11.1.1** 相关文档
- 《OPA378 数据表》, [SBOS417](http://www.ti.com/cn/lit/pdf/SBOS417)
- 《OPA625 数据表》, [SBOS688](http://www.ti.com/cn/lit/pdf/SBOS688)
- 《REF5045 数据表》 (文献编号 [SBOS410](http://www.ti.com/cn/lit/pdf/SBOS410))

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms](http://www.ti.com/corp/docs/legal/termsofuse.shtml) of [Use.](http://www.ti.com/corp/docs/legal/termsofuse.shtml)

TI E2E™ Online [Community](http://e2e.ti.com) *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design [Support](http://support.ti.com/) *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

multiSPI, TINA, E2E are trademarks of Texas Instruments. SPI is a trademark of Motorola Mobility LLC. All other trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时, 应将导线一起截短或将装置放置于导电泡棉中, 以防止 MOS 门极遭受静电损

11.5 Glossary

[SLYZ022](http://www.ti.com/cn/lit/pdf/SLYZ022) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

12 机械封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Jul-2024

GENERIC PACKAGE VIEW

RGE 24 VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204104/H

PACKAGE OUTLINE

VQFN - 1 mm max height RGE0024H

PLASTIC QUAD FLATPACK- NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the
- The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RGE0024H VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

RGE0024H VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI [的销售条款或](https://www.ti.com.cn/zh-cn/legal/terms-conditions/terms-of-sale.html) [ti.com](https://www.ti.com) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司