SLVSB19D February   2012  – March 2015 DRV8834

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Current Control
      2. 8.3.2 Current Recirculation and Decay Modes
      3. 8.3.3 Protection Circuits
        1. 8.3.3.1 Overcurrent Protection (OCP)
        2. 8.3.3.2 Thermal Shutdown (TSD)
        3. 8.3.3.3 Undervoltage Lockout (UVLO)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Phase/Enable Mode
      2. 8.4.2 Indexer Mode
      3. 8.4.3 nSLEEP Operation
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Sense Resistor
    2. 9.2 Typical Application
      1. 9.2.1 Phase/Enable Mode Driving Two DC Motors
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Motor Voltage
          2. 9.2.1.2.2 Power Dissipation
          3. 9.2.1.2.3 Motor Current Trip Point
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Phase/Enable Mode Driving a Stepper Motor
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Stepper Motor Speed
          2. 9.2.2.2.2 Current Regulation
          3. 9.2.2.2.3 Decay Modes
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Indexer Mode Driving a Stepper Motor
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedures
          1. 9.2.3.2.1 Stepper Motor Speed
          2. 9.2.3.2.2 Current Regulation
          3. 9.2.3.2.3 Decay Modes
        3. 9.2.3.3 Application Curves
      4. 9.2.4 High-Resolution Microstepping Using a Microcontroller to Modulate VREF Signals
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
      1. 11.3.1 Maximum Output Current
      2. 11.3.2 Thermal Protection
      3. 11.3.3 Power Dissipation
      4. 11.3.4 Heatsinking
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

1 Features

  • Dual-H-Bridge Current-Control Motor Driver
    • Capable of Driving Two DC Motors or One Stepper Motor
  • Two Control Modes:
    • Built-In Indexer Logic With Simple STEP/DIRECTION Control and Up to
      1/32-Step Microstepping
    • PHASE/ENABLE Control, With the Ability to Drive External References for > 1/32-Step Microstepping
  • Output Current 1.5-A Continuous, 2.2-A Peak per H-Bridge (at VM = 5 V, 25°C)
  • Low RDS(ON): 305-mΩ HS + LS
    (at VM = 5 V, 25°C)
  • Wide Power Supply Voltage Range:
    2.5 V to 10.8 V
  • Dynamic tBLANK and Mixed Decay Modes for Smooth Microstepping
  • PWM Winding Current Regulation and Limiting
  • Thermally Enhanced Surface-Mount Package

2 Applications

  • Battery-Powered Toys
  • POS Printers
  • Video Security Cameras
  • Office Automation Machines
  • Gaming Machines
  • Robotics

3 Description

The DRV8834 provides a flexible motor driver solution for toys, printers, cameras, and other mechatronic applications. The device has two H-bridge drivers, and is intended to drive a bipolar stepper motor or two DC motors.

The output driver block of each H-bridge consists of N-channel power MOSFETs configured as an H-bridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

With proper PCB design, each H-bridge of the DRV8834 can driving up to 1.5-A RMS (or DC) continuously, at 25°C with a VM supply of 5 V. The device can support peak currents of up to 2.2 A per bridge. Current capability is reduced slightly at lower VM voltages.

Internal shutdown functions with a fault output pin are provided for overcurrent protection, short-circuit protection, undervoltage lockout and overtemperature. A low-power sleep mode is also provided.

The DRV8834 is packaged in a 24-pin HTSSOP or VQFN package with PowerPAD™ (Eco-friendly: RoHS & no Sb/Br).

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
DRV8834 HTSSOP (24) 7.80 mm × 4.40 mm
VQFN (24) 4.00 mm × 4.00 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

DRV8834 schem_1_slvsb19.gif