Sanjay Pithadia
Resolvers provide accurate and high-reliable position feedback in industrial drives like servo drives, especially in harsh industrial environments with dust and temperatures above 150°C. A resolver is an absolute mechanical angle sensor and operates as a variable coupling transformer. This means that the amount of magnetic coupling between the primary winding and two secondary windings varies according to the angle position of the rotating element (rotor), which is typically mounted on the motor shaft. Resolvers can withstand severe conditions for a very long time, making them the perfect choice for industrial motor controls, servos, robotics (including service robots and manufacturing robots), power-train units in hybrid- and full-electric vehicles, and many other applications that require precise shaft rotation.
Industrial drive manufacturers using resolvers in their designs tend to care about robustness, the reliability of the absolute angle measurement and the overall system cost. Because a resolver involves differential signals for input as well as output, this greatly improves their ability to reject common-mode noise. Electromagnetic compatibility (EMC) plays a major role in defining drive robustness. EMC compliance to specific standards is a must. Most industrial servo drives typically use shielded cables to connect to the motor and position-feedback sensor like the resolver. Cable lengths can be 100m and even more. At longer cable lengths, impulse noise currents on the cable’s shield induced by the inverter’s pulse-width modulation (PWM) switching can couple into the resolver’s differential signal pairs. Very fast transient bursts – like crosstalk from the switching inverter power cable with high dV/dt in the range of ~10kV/µs – can impact the performance of resolver-to-digital converters (RDCs).
The recently released EMC-Compliant Single-Chip Resolver-to-Digital Converter (RDC) Reference Design provides a solution for EMC-compliant RDC through a single-chip PGA411-Q1 with 12-bit angle resolution. See Figure 1.
Solving many of the challenges for RDC application, this reference design provides highly integrated EMC-compliant solution with easy real-time evaluation.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated