TIDUEM7A April   2019  – February 2021

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 End Equipment
      1. 1.1.1 Electricity Meter
    2. 1.2 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 ADS131M04
      2. 2.2.2 TPS7A78
      3. 2.2.3 MSP432P4111
      4. 2.2.4 TPS3840
      5. 2.2.5 THVD1500
      6. 2.2.6 ISO7731B
      7. 2.2.7 TRS3232E
      8. 2.2.8 TPS709
      9. 2.2.9 ISO7720
    3. 2.3 Design Considerations
      1. 2.3.1 Design Hardware Implementation
        1. 2.3.1.1 TPS7A78 Cap-Drop Supply
        2. 2.3.1.2 TPS3840 SVS
        3. 2.3.1.3 Analog Inputs
          1. 2.3.1.3.1 Voltage Measurement Analog Front End
          2. 2.3.1.3.2 Current Measurement Analog Front End
      2. 2.3.2 Current-Detection Mode
        1. 2.3.2.1 ADS131M04 Current-Detection Procedure
        2. 2.3.2.2 Using an MCU to Trigger Current-Detection Mode
          1. 2.3.2.2.1 Using a Timer to Trigger Current-Detection Mode Regularly
          2. 2.3.2.2.2 MCU Procedure for Entering and Exiting Current-Detection Mode
        3. 2.3.2.3 How to Implement Software for Metrology Testing
          1. 2.3.2.3.1 Setup
            1. 2.3.2.3.1.1 Clock
            2. 2.3.2.3.1.2 Port Map
            3. 2.3.2.3.1.3 UART Setup for GUI Communication
            4. 2.3.2.3.1.4 Real-Time Clock (RTC)
            5. 2.3.2.3.1.5 LCD Controller
            6. 2.3.2.3.1.6 Direct Memory Access (DMA)
            7. 2.3.2.3.1.7 ADC Setup
          2. 2.3.2.3.2 Foreground Process
            1. 2.3.2.3.2.1 Formulas
          3. 2.3.2.3.3 Background Process
            1. 2.3.2.3.3.1 per_sample_dsp()
              1. 2.3.2.3.3.1.1 Voltage and Current Signals
              2. 2.3.2.3.3.1.2 Frequency Measurement and Cycle Tracking
            2. 2.3.2.3.3.2 LED Pulse Generation
            3. 2.3.2.3.3.3 Phase Compensation
    4. 2.4 Hardware, Software, Testing Requirements, and Test Results
      1. 2.4.1 Required Hardware and Software
        1. 2.4.1.1 Cautions and Warnings
        2. 2.4.1.2 Hardware
          1. 2.4.1.2.1 Connections to the Test Setup
          2. 2.4.1.2.2 Power Supply Options and Jumper Settings
        3. 2.4.1.3 Software
      2. 2.4.2 Testing and Results
        1. 2.4.2.1 Test Setup
          1. 2.4.2.1.1 SVS and Cap-Drop Functionality Testing
          2. 2.4.2.1.2 Electricity Meter Metrology Accuracy Testing
          3. 2.4.2.1.3 Current-Detection Mode Testing
          4. 2.4.2.1.4 Viewing Metrology Readings and Calibration
            1. 2.4.2.1.4.1 Viewing Results From LCD
            2. 2.4.2.1.4.2 Calibrating and Viewing Results From PC
              1. 2.4.2.1.4.2.1 Viewing Results
              2. 2.4.2.1.4.2.2 Calibration
                1. 2.4.2.1.4.2.2.1 Gain Calibration
                  1. 4.2.1.4.2.2.1.1 Voltage and Current Gain Calibration
                  2. 4.2.1.4.2.2.1.2 Active Power Gain Calibration
                2. 2.4.2.1.4.2.2.2 Offset Calibration
                3. 2.4.2.1.4.2.2.3 Phase Calibration
        2. 2.4.2.2 Test Results
          1. 2.4.2.2.1 SVS and TPS7A78 Functionality Testing Results
          2. 2.4.2.2.2 Electricity Meter Metrology Accuracy Results
          3. 2.4.2.2.3 Current-Detection Mode Results
  8. 3Design Files
    1. 3.1 Schematics
    2. 3.2 Bill of Materials
    3. 3.3 PCB Layout Recommendations
      1. 3.3.1 Layout Prints
    4. 3.4 Altium Project
    5. 3.5 Gerber Files
    6. 3.6 Assembly Drawings
  9. 4Related Documentation
    1. 4.1 Trademarks
  10. 5About the Author
  11. 6Revision History

Description

This reference design implements Class 0.5 single-phase energy measurement using standalone multi-channel analog-to-digital converters (ADC) to sample a shunt current sensor. With the combination of the shunt sensor and a compact magnetically immune power supply, the design provides protection against magnetic tampering attacks. The design also provides the capability to detect potential tampering from neutral line disconnection. The combination of 8-kHz sampling rate and a high-performance ARM®Cortex®-M4 MCU allows the addition of power quality functions, such as individual harmonic analysis. The necessary software functionality is implemented in the ADC Energy Metrology library. The software library can be compiled with Code Composer Studio™ or IAR Embedded Workbench®.