SWRA667 January   2020 CC1312PSIP , CC1312R , CC1314R10 , CC1352P , CC1352P7 , CC1352R , CC2642R , CC2642R-Q1 , CC2652P , CC2652R , CC2652R7 , CC2652RB , CC2652RSIP

 

  1.   Cryptographic Performance and Energy Efficiency on SimpleLink™ CC13x2/CC26x2 Wireless MCUs
    1.     Trademarks
    2. 1 Abbreviations and Acronyms
    3. 2 Introduction
    4. 3 Benefits of Cryptographic Acceleration in Embedded Security Solutions
    5. 4 TI Drivers for SimpleLink MCUs
      1. 4.1 Power Management Overview
      2. 4.2 Return Behavior
        1. 4.2.1 Runtime Overhead
      3. 4.3 Efficient Power Management
    6. 5 CC13x2/CC26x2 Crypto Peripherals
      1. 5.1 AES and Hash Crypto Accelerator
      2. 5.2 Public Key Accelerator
        1. 5.2.1 ECDH Power Management Driver Example
      3. 5.3 TRNG
    7. 6 Benchmarks
      1. 6.1 AES and Hash Crypto Accelerator Based Drivers
        1. 6.1.1 AES CBC
        2. 6.1.2 AES CCM
        3. 6.1.3 AES GCM
        4. 6.1.4 AES CTR DRBG
        5. 6.1.5 SHA-224
        6. 6.1.6 SHA-256
        7. 6.1.7 SHA-384
        8. 6.1.8 SHA-512
      2. 6.2 PKA Engine Based Drivers
        1. 6.2.1 ECDH
        2. 6.2.2 ECDSA
        3. 6.2.3 ECJPAKE
      3. 6.3 TRNG Based Drivers
        1. 6.3.1 TRNG
    8. 7 Conclusion
    9. 8 References
    10.     Appendix: Plots of Blocking vs Polling Performance

Cryptographic Performance and Energy Efficiency on SimpleLink™ CC13x2/CC26x2 Wireless MCUs

This application report describes the benefits of cryptographic acceleration and provides performance and energy consumption measurements of on-chip cryptographic accelerators integrated in the SimpleLink CC13x2/CC26x2 family of wireless microcontrollers (MCUs). It also benchmarks these measurements against Arm®Cortex®-M4F software-based implementations of cryptographic operations. This document also describes device power management and TI driver concepts to consider for enabling efficient usage of SimpleLink cryptographic drivers.