Analog Engineer's Circuit 真の差動、4 × 2 MUX、アナログ フロント エンド、同時サンプリング ADC 回路

TEXAS INSTRUMENTS

Luis Chioye

入力 (THS4551 入力)	ADC 入力 (THS4551 出力)	デジタル出力 ADS7042		
VinP = +0.23V, VinN = +3.866V, VinMin(Dif) = -3.636V	VoutP = +0.23V, VoutN = 3.866V, Vout(Dif) = -3.636V	8E60 _H -29088 ₁₀		
VinP = +3.866V, VinN =0.23V, VinMax(Dif) = +3.636V	VoutP = 3.866V, VoutN = +0.23V, Vout(Dif) = +3.636V	71A0 _H +29088 ₁₀		
電流				

电标			
Vcc	Vee	Vref	Vocm
5	0 V	4.096 V	2.048 V

設計の説明

このデュアル同時サンプリング SAR ADC と4×2 チャネル多重化アナログ フロント エンドからなるデータ アクイジション ソリューションは、±3.866V の範囲の差動電圧信号を測定でき、最高 3MSPS の ADC サンプリング レート (またはチャネ ルあたり 750kSPS の実効サンプリング レート)、16 ビットの分解能をサポートしています。この回路はデュアル同時サン プリング SAR ADC を使用し、各 SAR ADC を 2 つの 4:1 (2x) マルチプレクサに接続して、ADC 1 個につき 4 つの差 動入力チャネルを提供します。8 つの完全差動アンプ (FDA) が、多重化された SAR ADC 入力を駆動します。この回路 は、光モジュールやアナログ入力モジュールといった用途でのデュアル同時信号の高精度測定に適用できます。また、サ ーボドライブ制御モジュール、サーボドライブ位置フィードバック、サーボドライブ位置センサなどのモータ駆動用途にも 使えます。

JAJA641B - OCTOBER 2018 - REVISED AUGUST 2024 資料に関するフィードバック (ご意見やお問い合わせ) を送信

仕様

仕様	目標	計算結果	シミュレーション結果
デュアル ADC サンプリング速度	3Msps	3Msps	3Msps
チャネルあたりのサンプリングレート (デュアル、同時)	750kSPS (3MSPS / 4)	750kSPS (3-MSPS / 4)	750-kSPS (3MSPS / 4)
ADC 過渡入力電圧セトリング	<< 1 LSB << 125µV	NA	20µV
ADC 入力でのノイズ	50µV _{rms}	55.9µV _{rms}	51.1µV _{rms}

デザイン ノート

- 1. デュアル同時サンプリング、高スループット (3MSPS) という要件のため、ADS9224R を選択しました。
- 2. 各 ADC で 4 チャネル差動入力をサポートするために、TMUX1109 4:1 (2x) マルチプレクサを選択しました。
- 3. ADC のフルスケール範囲、分解能、同相範囲の仕様を確認します。これについては「部品選定」で述べます。
- 4. 同相および出力振幅の仕様に基づいて、FDA (THS4551)の線形範囲を決定します。これについては「部品選定」 で述べます。
- 5. 歪みを最小限に抑えるために、ADC入力のすべてのフィルタコンデンサには COG コンデンサを選択します。
- 6. FDA のゲイン抵抗 RF1、2、RG1、2 を選択します。高精度、低ゲインドリフトを実現し、歪みを最小限に抑えるため に 0.1% 20ppm/℃以下の薄膜抵抗を使用します。
- 7. 『Introduction to SAR ADC Front-End Component Selection』で、電荷バケツ回路 Rfil1、Rfil1、Cfil の選定方法を 説明しています。これらの部品の値は、アンプの帯域幅、データコンバータのサンプリングレート、データコンバータ の設計によって決まります。ここに示す値は、この例のアンプとデータコンバータで適切なセトリングと AC 性能を実 現します。設計を変更する場合は、別の RC フィルタを選定する必要があります。
- 8. THS4551 は、ADC の入力サンプリングとマルチプレクサの電荷注入による電荷のキックバック過渡電圧を安定化す るのに十分な帯域幅を備えており、同相レベルを SAR ADC の電圧範囲にシフトできるため、高速 高精度の完全差 動 SAR アプリケーションによく使用されています。

部品選定

- 1. Find ADC full-scale input range. In this circuit, ADS9224 internal V_REF= 2.5V
 - $ADC_{Full-Scale Range} = (\pm 1.6384 V/V) \cdot V_{REF} = \pm 4.096V$ from ADS9224R datasheet
- 2. Find required ADC common-mode voltage 2.
 - $V_{CM} = \frac{+ADC_{Full-Scale Range}}{2} = +2.048V$ from ADS9224R datasheet

Use REFby2 Output pin of ADS9224R to connect to FDA (THS4551) VCOM = 2.048V

- 3. Find FDA absolute output voltage range for linear operation:
- 0.23V < V_{out} < 4.77V from THS4551 output low/high specification for linear operation
- 4. Find FDA differential output voltage range for linear operation. The general output voltage equations for this circuit:

$$V_{outMin} = \frac{V_{outDifMin}}{2} + V_{cm}$$
$$V_{outMax} = \frac{V_{outDifMax}}{2} + V_{cm}$$

Rearrange the equations and solve for $V_{outDifMin}$ and $V_{outDifMax}$. Find maximum differential output voltage range based on worst case:

$$V_{outDifMax} = 2 \cdot V_{outMax} - 2 \cdot V_{cm} = 2 \cdot (4.096V) - 2 \cdot (2.048V) = 4.096V$$

 $V_{outDifMin} = 2 \cdot V_{outMin} - 2 \cdot V_{cm} = 2 \cdot (0.23V) - 2 \cdot (2.048V) = -3.636V$

Based on combined worst case, choose $V_{outDifMin}$ = -3.636V and $V_{outDifMax}$ = +3.636V

5. Set FDA gain to 1 V/V

$$Gain_{FDA} = \frac{R_f}{R_g} = \frac{1.00 \,\mathrm{k}\Omega}{1.00 \,\mathrm{k}\Omega} = 1 \,\mathrm{V}/\mathrm{V}$$

6. Select the minimum charge kickback capacitor filter to optimize circuit for fastest settling. $C_{sh} = 16pF$ internal sample-and-hold capacitor from ADS9224R datasheet

Select a capacitor $10 \times$ larger than $C_{fil} = 150 pF$

7. Optimize RC charge kickback filter resistors R_{fil1}, R_{fil2} and feedback capacitors C_{f1}, C_{f2} for both settling and stability using TINA simulations. This is covered in the transient settling optimization and stability simulation sections.

過渡セトリングの最適化

TINA シミュレーションを使用して、安定性と高速な過渡セトリングを実現するように RC キックバック フィルタを最適化しま す。過渡シミュレーションでは、マルチプレクサ (TMUX1109) の 2 つの隣接チャネルを使用します。マルチプレクサによ るスキャン シーケンス中のワーストケースの過渡セトリングをシミュレートするために、2 つの隣接チャネルをそれぞれ正の フルスケールと負のフルスケールに近い電圧に設定します。マルチプレクサのドレイン容量と直列抵抗を、マルチプレクサ シミュレーション回路でモデル化します。SAR ADC のサンプル / ホールド コンデンサは、アクイジション期間中に SAR ADC の分解能である 16 ビット以内にセトリングする必要があります。このシミュレーション回路の概略回路図を以下に示 します。

マルチプレクサと ADC の制御タイミング

下図に、ADC の変換制御 (CONVST) とマルチプレクサのチャネル制御のタイミングを示します。ADS9224R は最高サ ンプリング レート 3Msps (最小サイクル時間 333ns) をサポートしています。CONVST 信号の立ち上がりエッジの前にチ ャネルが切り替わるのを防止するため、CONVST の立ち上がりエッジ後の MUX のチャネル制御タイミングにわずかな遅 延を挿入します。この件の詳しい理論については、TI の設計である 16 ビット、400kSPS、4 チャネル多重データ取得シ ステム、高入力電圧用リファレンス デザインを参照してください。

過渡セトリングの結果

以下の TINA 過渡シミュレーションは、隣接 MUX チャネル間のフルスケール ステップ変動後の FDA、マルチプレクサ、 SAR ADC サンプル/ホールドのセトリングを示しています。このようなシミュレーションは、サンプル/ホールド キックバック 回路と AFE アンプ回路が適正に選定されていることを示します。最高水準のセトリングと AC 性能を実現する RC フィル タの選定方法については、『Introduction to SAR ADC Front-End Component Selection』を参照してください。

AC 伝達特性

この回路のゲインは 0dB (1V/V)、周波数帯域幅のシミュレーション結果は 16.45MHz です。帯域幅の計算結果とシミュ レーション結果がほぼ一致していることに注意します (計算結果 = 17.62MHz、シミュレーション結果 = 16.45MHz)。帯域 幅の計算およびシミュレーションの概要については、『オペアンプの帯域幅』を参照してください。

システムの帯域幅は出力フィルタにより設定されます。

JAJA641B – OCTOBER 2018 – REVISED AUGUST 2024 資料に関するフィードバック(ご意見やお問い合わせ)を送信 *真の差動、4 × 2 MUX、 アナログ フロント エンド、 同時サンプリング ADC 回路*5

安定化シミュレーションのグラフ

以下の回路を TINA で使用し、TINA の AC 解析を用いてループ ゲインの測定と位相マージンの検証を行います。帰還 ループ内に抵抗 RISO = 10Ω を使用して、位相マージンを増やします。この回路は安定性に優れています (約 45°の位 相マージン)。この件の詳しい理論については、『オペアンプの安定性』を参照してください。

ノイズ シミュレーション

Simplified noise calculation estimate:

The dominant pole in this data acquisition circuit is in the RC kickback filter:

$$f_c = \frac{1}{2\pi (R_{fil1} + R_{fil2})C_{diff}} = \frac{1}{2\pi (30.1\Omega + 30.1\Omega)(150pF)} = 17.62MHz$$

Noise of THS4551 FDA referred to ADC input

Noise Gain:
$$NG = 1 + R_f / R_g = 1 + \frac{1k\Omega}{1k\Omega} = 2V/V$$

 $e_{noFDA} = \sqrt{(e_{nFDA} \cdot NG)^2 + 2(i_{nFDA} \cdot R_f)^2 + 2(4kTR_f \cdot NG)}$
 $e_{noFDA} = \sqrt{(3.4nV / \sqrt{Hz} \cdot 2.00V / V)^2 + 2(0.5pA / \sqrt{Hz} \cdot 1k\Omega)^2 + 2(16.56 \cdot 10^{-18} \cdot 2.00V / V)}$
 $e_{noFDA} = 10.629nV / \sqrt{Hz}$
 $E_{nFDA} = e_{noFDA} \cdot \sqrt{K_n \cdot f_c} = (10.629nV / \sqrt{Hz})\sqrt{1.57 \cdot 17.62MHz} = 55.90 \mu Vrms$

下図に、FDA 回路の総ノイズの TINA シミュレーション結果を示します。この件の詳しい理論については、『Calculating the Total Noise for ADC Systems』を参照してください。ノイズの計算結果とシミュレーション結果がほぼ一致していることに注意します (計算結果 = $55.9\mu V_{rms}$ 、シミュレーション結果 = $51.5\mu V_{rms}$)。

使用デバイス

デバイス	主な特長	リンク	他の使用可能デバイス
ADS9224R	分解能 16 ビット、SPI、サンプル レート 3MSPS、完全差動入力、2.5V リフ ァレンス搭載、デュアル、同時サンプリング、低レイテンシ	基準電圧と強化 SPI 機能搭載、16 ビット、3MSPS、デュアルチャネル、同時サンプリング SAR ADC	A/D コンバータ (ADC)
THS4551	150MHz、入力電圧ノイズ:3.3nV + √Hz、完全差動アンプ	低ノイズ、高精度、150MHz 完全差動ア ンプ	完全差動アンプ

主要なファイルへのリンク

テキサス・インスツルメンツ、SBAC219 TINA ファイル、ソフトウェア サポート

商標

すべての商標は、それぞれの所有者に帰属します。

改訂履歴

C	hanges from Revision A (November 2018) to Revision B (August 2024)	Page
•	文書全体にわたって表、図、相互参照の書式を更新	1

Cł	nanges from Revision * (Oct	ober 2019) to Revision A (November 2019)	Page
•	タイトルのサイズを小さく変更。	「過渡セトリングの最適化」セクションの回路を更新。.	

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーショ ンや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性 および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否しま す。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種 規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated