

SN74LV373A-Q1

SCLS586D - JUNE 2004 - REVISED MARCH 2023

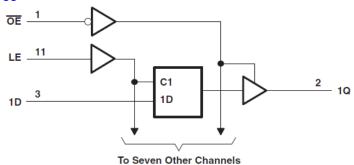
SN74LV373A-Q1 Octal Transparent D-Type Latch With 3-State Outputs

1 Features

- Qualified for automotive applications
- V_{CC} operation of 2 V to 5.5 V
- Maximum tpd of 8.5 ns at 5 V
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2.3 V at $V_{CC} = 3.3 \text{ V}, \text{ TA} = 25^{\circ}\text{C}$
- Supports mixed-mode voltage operation on all
- I_{off} supports partial-power-down mode operation
- Latch-up performance exceeds 250 mA per JESD

2 Applications

- Synchronize digital signals to clock
- Use fewer inputs to monitor signals
- Convert a switch to a toggle


3 Description

The SN74LV373A-Q1 device is an octal transparent D-type latch designed for 2 V to 5.5 V V_{CC} operation. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

Package Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LV373A-Q1	PW (TSSOP, 20)	6.50 mm × 4.40 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1 Features1	7 Parameter Measurement Information8
2 Applications1	8 Detailed Description9
3 Description1	8.1 Overview9
4 Revision History2	8.2 Functional Block Diagram9
5 Pin Configuration and Functions3	8.3 Device Functional Modes10
6 Specifications4	9 Application and Implementation11
6.1 Absolute Maximum Ratings4	9.1 Power Supply Recommendations11
6.2 ESD Ratings4	9.2 Layout11
6.3 Recommended Operating Conditions5	10 Device and Documentation Support12
6.4 Thermal Information5	10.1 Documentation Support12
6.5 Electrical Characteristics6	10.2 Receiving Notification of Documentation Updates 12
6.6 Timing Requirements, 2.5 V ± 0.2 V6	10.3 Support Resources12
6.7 Timing Requirements, V _{CC} = 3.3 V ± 0.3 V6	10.4 Trademarks12
6.8 Timing Requirements, V _{CC} = 5 V ± 0.5 V6	10.5 Electrostatic Discharge Caution12
6.9 Switching Characteristics6	10.6 Glossary12
6.10 Noise Characteristics7	11 Mechanical, Packaging, and Orderable
6.11 Operating Characteristics7	Information12

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (October 2007) to Revision D (March 2023)

Page

- Updated thermal values for PW package from RθJA = 83 to 128.2, all values in °C/W

5 Pin Configuration and Functions

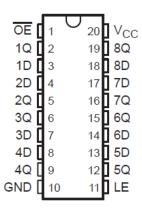


Figure 5-1. SN74LV373A-Q1 TSSOP -PW Package (Top View)

Table 5-1. Pin Function

PIN		TYPE	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
ŌĒ	1	Input	Output enable, active low			
1Q	2	Output	Output for channel 1			
1D	3	Input	ut for channel 1			
2D	4	Input	Input for channel 2			
2Q	5	Output	Output for channel 2			
3Q	6	Output	Output for channel 3			
3D	7	Input	Input for channel 3			
4D	8	Input	Input for channel 4			
4Q	9	Output	Output for channel 4			
GND	10	_	Ground			
LE	11	Input	Latch enable			
5Q	12	Output	Output for channel 5			
5D	13	Input	Input for channel 5			
6D	14	Input	Input for channel 6			
6Q	15	Output	Output for channel 6			
7Q	16	Output	Output for channel 7			
7D	17	Input	Input for channel 7			
8D	18	Input	Input for channel 8			
8Q	19	Output	Output for channel 8			
V _{CC}	20		Positive supply			
Thermal Pad ₁		_	The thermal pad can be connect to GND or left floating. Do not connect to any other signal or supply.			

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
VI	Input voltage ⁽²⁾				V
Vo	V _O Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾				V
Vo	Output voltage (2) (3)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND		±70	mA	
θ_{JA}	Package thermal impedance			83	°C/W
T _{stg}	Storage temperature	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

6.2 ESD Ratings

			VALUE	UNIT
	, Electrostatic	Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 ⁽¹⁾	±4000	
V _(ESD)		Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B	±2000	V

(1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	V	
		V _{CC} = 2 V	1.5			
\	Lligh level input veltage	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		V	
V_{IH}	High-level input voltage	VCC = 3 V to 3.6 V	V _{CC} × 0.7		V	
		VCC = 4.5 V to 5.5 V	V _{CC} × 0.7			
		V _{CC} = 2 V		0.5		
V	I am land is such as the sec	V _{CC} = 2.3 V to 2.7 V	V	V _{CC} × 0.3		
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V	V	/ _{CC} × 0.3	V	
Vı		V _{CC} = 4.5 V to 5.5 V	V	V _{CC} × 0.3		
VI	Input voltage		0	5.5	V	
.,	Output voltage	High or low state	0	V _{CC}	V	
Vo		3-state	0	5.5	V	
	High-level output current	V _{CC} = 2 V		-50	μA	
		V _{CC} = 2.3 V to 2.7 V		-2		
I _{OH}		V _{CC} = 3 V to 3.6 V		-8	mA	
		V _{CC} = 4.5 V to 5.5 V		-16		
		V _{CC} = 2 V		50	μA	
	I am land antonit among	V _{CC} = 2.3 V to 2.7 V		2		
l _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		8	mA	
		V _{CC} = 4.5 V to 5.5 V		16		
		V _{CC} = 2.3 V to 2.7 V		200		
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V	
		V _{CC} = 4.5 V to 5.5 V		20		
T _A	Operating free-air temperature	-	-40	85	°C	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See *Implications of Slow or Floating CMOS Inputs*.

6.4 Thermal Information

		SN74LV373A-Q1	
THERMAL METRIC ⁽¹⁾		PW (TSSOP)	UNIT
		20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	128.2	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted).

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} - 0.1		
V _{OH}	I _{OH} = -2 mA	2.3 V	2		V
VOH	I _{OH} = -8 mA	3 V	2.48		V
	I _{OH} = -16 mA	4.5 V	3.8		
	I _{OL} = 50 μA	2 V to 5.5 V		0.1	
V	I _{OL} = 2 mA	2.3 V		0.4	. v
V _{OL}	I _{OL} = 8 mA	3 V		0.44	
	I _{OL} = 16 mA	4.5 V		0.55	
I _I	V _I = 5.5 V or GND	0 V to 5.5 V		±1	μA
I _{OZ}	V _O = V _{CC} or GND	5.5 V		±5	μΑ
I _{cc}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		20	μΑ
I _{off}	V_{I} or $V_{O} = 0$ to 5.5 V	0 V		Ę	μΑ
Ci	V _I = V _{CC} or GND	3.3 V		2.9	pF

6.6 Timing Requirements, 2.5 V ± 0.2 V

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

			MIN	MAX	UNIT
t _w	Pulse duration, LE high		6.5		ns
t _{su}	Setup time, data before LE↓	High or low	5		ns
t _h	Hold time, data after LE↓	High or low	1.5		ns

6.7 Timing Requirements, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

			MIN	MAX	UNIT
t _w	Pulse duration, LE high		5		ns
t _{su}	Setup time, data before LE↓	High or low	4		ns
t _h	Hold time, data after LE↓	High or low	1		ns

6.8 Timing Requirements, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

			MIN MAX	UNIT
t _w	Pulse duration, LE high			ns
t _{su}	Setup time, data before LE↓	High or low	4	ns
t _h	Hold time, data after LE↓	High or low	1	ns

6.9 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

PARAMETER	FROM	то	LOAD	2.5 V :	± 0.2 V	3.3 V ± 0	.3 V	5 V ±	0.5 V	UNIT
PARAIVIETER	(INPUT) (OUTPUT)	CAPACITANCE	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
+	D	Q		1	17	1	13.5	1	8.5	no
^L pd	LE	Q	C _L = 15 pF	1	19	1	13	1	8.5	ns
t _{en}	ŌĒ	Q		1	19	1	13.5	1	9.5	ns
t _{dis}	ŌĒ	Q		1	15	1	12	1	8.5	ns

over operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

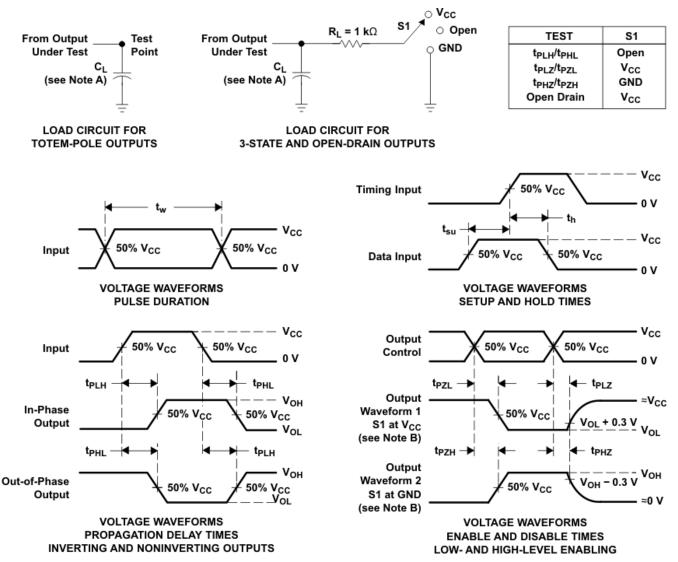
PARAMETER	FROM	то	LOAD	2.5 V :	± 0.2 V	3.3 V ± 0).3 V	5 V ± 0	0.5 V	UNIT
	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	MAX	MIN	MAX	MIN	MAX	CIVII
	D	Q	C ₁ = 50 pF	1	21	1	17	1	10.5	ns
t _{pd}	LE	Q		1	22	1	16.5	1	10.5	
t _{en}	ŌĒ	Q	CL = 30 pr	1	22	1	17	1	11.5	ns
t _{dis}	ŌĒ	Q		1	19	1	15	1	10.5	ns
t _{sk(o)}			C _L = 50 pF		2		1.5		1	ns

6.10 Noise Characteristics

 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$

	PARAMETER ⁽¹⁾	SN7	UNIT		
	FARAMETER	MIN	TYP	MAX	UNII
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.6	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.6	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.9		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V

⁽¹⁾ Characteristics for surface-mount packages only.


6.11 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
_	Power dissipation capacitance (outputs enabled)	$C_1 = 50 \text{ pF, } f = 10 \text{ MHz}$	3.3 V	17.4	nE
Cpd	Power dissipation capacitance (outputs enabled)	C _L = 30 με, τ = 10 ΜΠ2	5 V	19.5	pΕ

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns, and $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

 $\overline{\text{OE}}$ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} shall be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

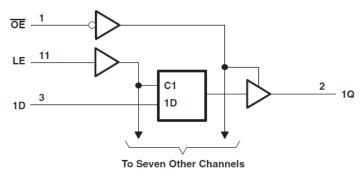


Figure 8-1. Logic Diagram (Positive Logic)

8.3 Device Functional Modes

Table 8-1. Function Table

	OUTPUT ⁽²⁾		
CLR	CLK	D	Q
L	Х	Х	L
Н	L, H, ↓	Х	Q_0
Н	1	L	L
Н	1	Н	Н

- (1) L = input low, H = input high, \uparrow = input transitioning from low to high, ↓ = input transitioning from high to low, X = do not care L = output low, H = output high, Q₀ = previous state

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Absolute Maximum Ratings* section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

9.2 Layout

9.2.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

9.2.1.1 Layout Example

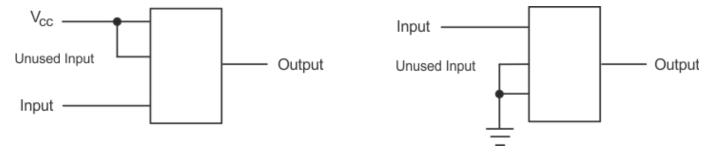


Figure 9-1. Layout Diagram

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 10-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN74LV373A-Q1	Click here	Click here	Click here	Click here	Click here

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

www.ti.com 3-Nov-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV373AIPWRG4Q1	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV373AI	Samples
SN74LV373AIPWRQ1	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	LV373AI	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

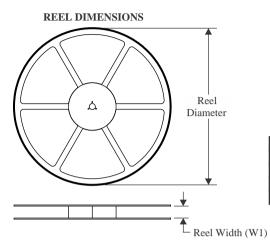
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

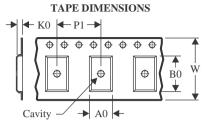
PACKAGE OPTION ADDENDUM

www.ti.com 3-Nov-2022

OTHER QUALIFIED VERSIONS OF SN74LV373A-Q1:

● Catalog : SN74LV373A


NOTE: Qualified Version Definitions:

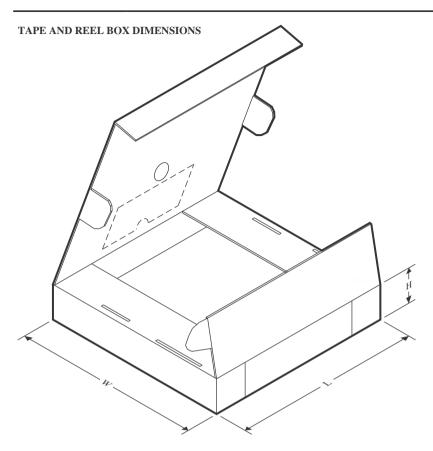

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 19-Mar-2024

TAPE AND REEL INFORMATION

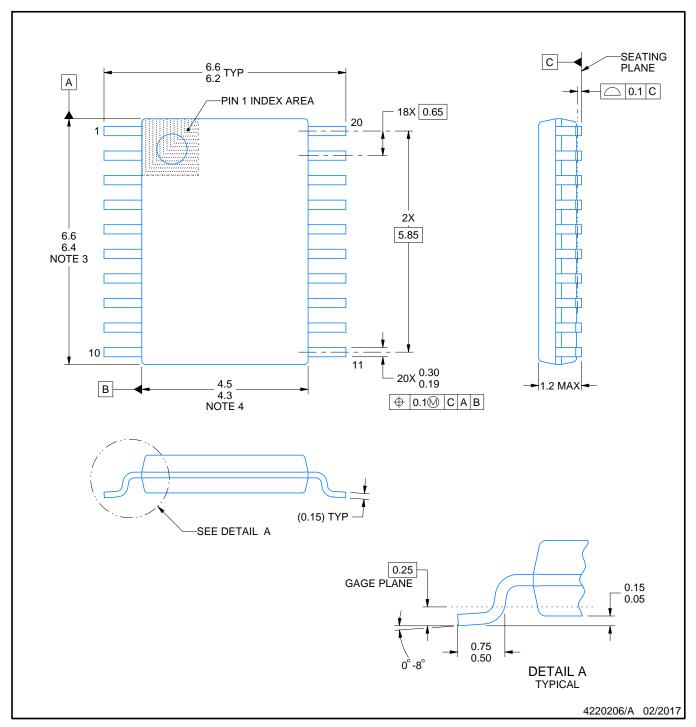
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV373AIPWRG4Q1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LV373AIPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74LV373AIPWRQ1	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 19-Mar-2024

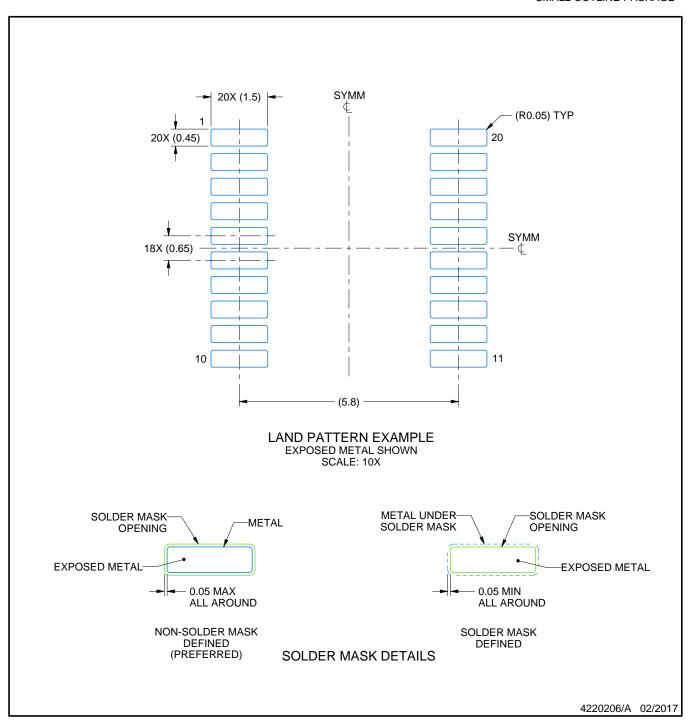


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV373AIPWRG4Q1	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LV373AIPWRQ1	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LV373AIPWRQ1	TSSOP	PW	20	2000	356.0	356.0	35.0

SMALL OUTLINE PACKAGE

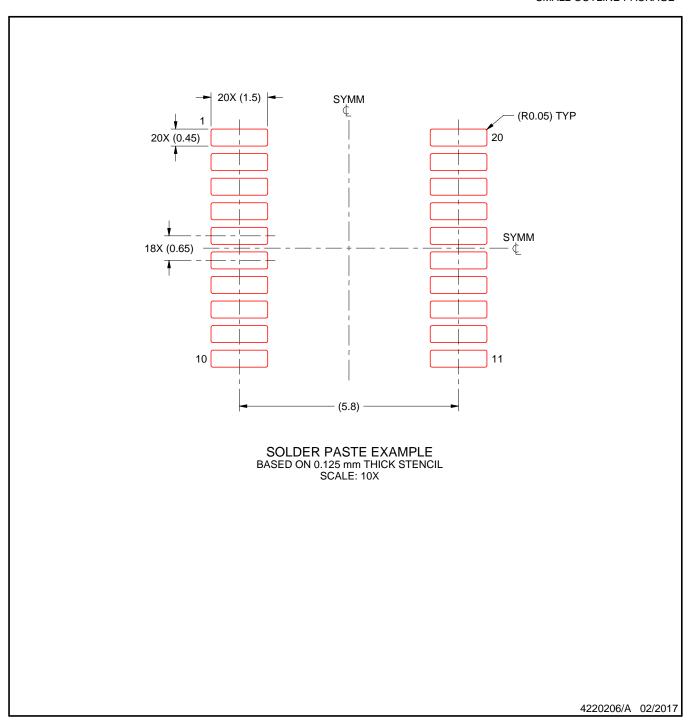
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated