Product details

Number of channels 2 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type LVTTL/CMOS Output type Push-Pull Clock frequency (MHz) 24 Supply current (max) (µA) 40 IOL (max) (mA) 6 IOH (max) (mA) -6 Features Balanced outputs, Clear, High speed (tpd 10-50ns), Negative edge triggered, Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
Number of channels 2 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type LVTTL/CMOS Output type Push-Pull Clock frequency (MHz) 24 Supply current (max) (µA) 40 IOL (max) (mA) 6 IOH (max) (mA) -6 Features Balanced outputs, Clear, High speed (tpd 10-50ns), Negative edge triggered, Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
PDIP (N) 14 181.42 mm² 19.3 x 9.4 SOIC (D) 14 51.9 mm² 8.65 x 6
  • Hysteresis on Clock Inputs for Improved Noise Immunity and Increased Input Rise and Fall Times
  • Asynchronous Reset
  • Complementary Outputs
  • Buffered Inputs
  • Typical fMAX = 60MHz at VCC = 5V, CL = 15pF, TA = 25°C
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il 1µA at VOL, VOH

  • Hysteresis on Clock Inputs for Improved Noise Immunity and Increased Input Rise and Fall Times
  • Asynchronous Reset
  • Complementary Outputs
  • Buffered Inputs
  • Typical fMAX = 60MHz at VCC = 5V, CL = 15pF, TA = 25°C
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . -55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il 1µA at VOL, VOH

The ’HC107 and ’HCT107 utilize silicon gate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL loads.

These flip-flops have independent J, K, Reset and Clock inputs and Q and Q\ outputs. They change state on the negative-going transition of the clock pulse. Reset is accomplished asynchronously by a low level input.

This device is functionally identical to the HC/HCT73 but differs in terminal assignment and in some parametric limits.

The HCT logic family is functionally as well as pin compatible with the standard LS family.

The ’HC107 and ’HCT107 utilize silicon gate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL loads.

These flip-flops have independent J, K, Reset and Clock inputs and Q and Q\ outputs. They change state on the negative-going transition of the clock pulse. Reset is accomplished asynchronously by a low level input.

This device is functionally identical to the HC/HCT73 but differs in terminal assignment and in some parametric limits.

The HCT logic family is functionally as well as pin compatible with the standard LS family.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
CD74HC73 ACTIVE High Speed CMOS Logic Dual Negative-Edge-Triggered J-K Flip-Flops with Reset Voltage range (2V to 6V), average drive strength (8mA), average propagation delay (20ns)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 15
Type Title Date
* Data sheet CD54HC107, CD74HC107, CD54HCT107, CD74HCT107 datasheet (Rev. D) 21 Oct 2003
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note SN54/74HCT CMOS Logic Family Applications and Restrictions 01 May 1996
Application note Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc 01 Apr 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Package Pins CAD symbols, footprints & 3D models
PDIP (N) 14 Ultra Librarian
SOIC (D) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos