A newer version of this product is available

open-in-new Compare alternates
This product continues to be available for existing customers. New designs should consider an alternate product.
Drop-in replacement with upgraded functionality to the compared device
TLV1812 ACTIVE Dual micropower high-voltage comparator Improved performance: wider supply voltage, lower offset voltage and faster speed

Product details

Number of channels 2 Output type Push-Pull Propagation delay time (µs) 4 Vs (max) (V) 15 Vs (min) (V) 2.7 Rating Catalog Iq per channel (typ) (mA) 0.006 Vos (offset voltage at 25°C) (max) (mV) 5 Rail-to-rail In Operating temperature range (°C) -40 to 85 Input bias current (±) (max) (nA) 0.0004 VICR (max) (V) 15.2 VICR (min) (V) -0.2
Number of channels 2 Output type Push-Pull Propagation delay time (µs) 4 Vs (max) (V) 15 Vs (min) (V) 2.7 Rating Catalog Iq per channel (typ) (mA) 0.006 Vos (offset voltage at 25°C) (max) (mV) 5 Rail-to-rail In Operating temperature range (°C) -40 to 85 Input bias current (±) (max) (nA) 0.0004 VICR (max) (V) 15.2 VICR (min) (V) -0.2
SOIC (D) 8 29.4 mm² 4.9 x 6
  • (Typical Unless Otherwise Noted)
  • Low Power Consumption (Max): IS = 10 μA/comp
  • Wide Range of Supply Voltages: 2.7V to 15V
  • Rail-To-Rail Input Common Mode Voltage Range
  • Rail-To-Rail Output Swing (Within 100 mV of the Supplies, @ V+ = 2.7V, and ILOAD = 2.5 mA)
  • Short Circuit Protection: 40 mA
  • Propagation Delay (@ V+ = 5V, 100 mV Overdrive): 4 μs

All trademarks are the property of their respective owners.

  • (Typical Unless Otherwise Noted)
  • Low Power Consumption (Max): IS = 10 μA/comp
  • Wide Range of Supply Voltages: 2.7V to 15V
  • Rail-To-Rail Input Common Mode Voltage Range
  • Rail-To-Rail Output Swing (Within 100 mV of the Supplies, @ V+ = 2.7V, and ILOAD = 2.5 mA)
  • Short Circuit Protection: 40 mA
  • Propagation Delay (@ V+ = 5V, 100 mV Overdrive): 4 μs

All trademarks are the property of their respective owners.

The LMC6762 is an ultra low power dual comparator with a maximum supply current of 10 μA/comparator. It is designed to operate over a wide range of supply voltages, from 2.7V to 15V. The LMC6762 has ensured specifications at 2.7V to meet the demands of 3V digital systems.

The LMC6762 has an input common-mode voltage range which exceeds both supplies. This is a significant advantage in low-voltage applications. The LMC6762 also features a push-pull output that allows direct connections to logic devices without a pull-up resistor.

A quiescent power consumption of 50 μW/amplifier (@ V+ = 5V) makes the LMC6762 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of power supply voltage. Ensured operation at 2.7V and a rail-to-rail performance makes this device ideal for battery-powered applications.

Refer to the LMC6772 datasheet for an open-drain version of this device.

The LMC6762 is an ultra low power dual comparator with a maximum supply current of 10 μA/comparator. It is designed to operate over a wide range of supply voltages, from 2.7V to 15V. The LMC6762 has ensured specifications at 2.7V to meet the demands of 3V digital systems.

The LMC6762 has an input common-mode voltage range which exceeds both supplies. This is a significant advantage in low-voltage applications. The LMC6762 also features a push-pull output that allows direct connections to logic devices without a pull-up resistor.

A quiescent power consumption of 50 μW/amplifier (@ V+ = 5V) makes the LMC6762 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of power supply voltage. Ensured operation at 2.7V and a rail-to-rail performance makes this device ideal for battery-powered applications.

Refer to the LMC6772 datasheet for an open-drain version of this device.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output datasheet (Rev. D) 26 Mar 2013
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
More literature Die D/S LMC6762 MDA Dual Micro-Pwr Rail-Rail Input Cmos Compw/ Push-Pull Output 28 Sep 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Simulation model

LMC6762 PSPICE Model

SNOM174.ZIP (4 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-01022 — Flexible 3.2-GSPS multi-channel AFE reference design for DSOs, radar and 5G wireless test systems

This high speed multi-channel data capture reference design enables optimum system performance. System designers needs to consider critical design parameters like clock jitter and skew for high speed multi-channel clock generation, which affects overall system SNR, SFDR, channel to channel skew (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01027 — Low-noise power supply reference design maximizing performance in 12.8-GSPS data acquisition systems

This reference design demonstrates an efficient, low-noise five-rail power supply design for very high-speed Data Acquisition (DAQ) systems capable of > 12.8 GSPS. The power supply DC/DC converters are frequency-synchronized and phase-shifted in order to minimize input current ripple and (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01028 — 12.8-GSPS analog front end reference design for high-speed oscilloscope and wide-band digitizer

This reference design provides a practical example of interleaved RF-sampling analog-to-digital converters (ADCs) to achieve a 12.8-GSPS sampling rate. This is done by time interleaving two RF-sampling ADCs. Interleaving requires a phase shift between the ADCs, which this reference design achieves (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010128 — Scalable 20.8 GSPS reference design for 12 bit digitizers

This reference design describes a 20.8 GSPS sampling system using RF sampling analog-to-digital converters (ADCs) in time interleaved configuration. Time interleaving method is a proven and traditional way of increasing sample rate, however, matching individual ADCs offset, gain and sampling time (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010122 — Reference design synchronizing data converter DDC and NCO features for multi-channel RF systems

This reference design addresses synchronization design challenges associated with emerging 5G adapted applications like massive multiple input multiple output (mMIMO), phase array radar and communication payload. The typical RF front end contains antenna, low-noise amplifier (LNA), mixer, local (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01442 — Direct RF-Sampling Radar Receiver for L-, S-, C-, and X-Band Using ADC12DJ3200 Reference Design

This reference design uses the ADC12DJ3200 evaluation module (EVM) to demonstrate a direct RF-sampling receiver for a radar operating in HF, VHF, UHF, L-, S-, C- and part of X-band. The wide analog-input bandwidth and high-sampling rate (6.4 GSPS) of the analog-to-digital converter (ADC) provides (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00431 — RF Sampling 4-GSPS ADC Reference Design with 8-GHz DC-Coupled Differential Amplifier

Wideband radio frequency (RF) receivers allow greatly increased flexibility in radio designs. The wide instantaneous bandwidth allows flexible tuning without changing hardware and the ability to capture multiple channels at widely separated frequencies.

This reference design describes a wideband RF (...)

Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00826 — 50-Ohm 2-GHz Oscilloscope Front-end Reference Design

This reference design is part of an analog front-end for 50Ω-input oscilloscope application. System designers can readily use this evaluation platform to process input signals from DC to 2 GHz in both frequency-domain and time-domain applications.
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos