This octal ECL-to-TTL translator is designed to provide efficient translation between a 10KH ECL signal environment and a TTL signal environment. This device is designed specifically to improve the performance and density of ECL-to-TTL CPU/bus-oriented functions such as memory-address drivers, clock drivers, and bus-oriented receivers and transmitters.
The eight flip-flops of the SN10KHT5574 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic levels that were set up at the D inputs.
A buffered output-enable input (OE) can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable input OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.
The SN10KHT5574 is characterized for operation from 0°C to 75°C.
This octal ECL-to-TTL translator is designed to provide efficient translation between a 10KH ECL signal environment and a TTL signal environment. This device is designed specifically to improve the performance and density of ECL-to-TTL CPU/bus-oriented functions such as memory-address drivers, clock drivers, and bus-oriented receivers and transmitters.
The eight flip-flops of the SN10KHT5574 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs are set to the logic levels that were set up at the D inputs.
A buffered output-enable input (OE) can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable input OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.
The SN10KHT5574 is characterized for operation from 0°C to 75°C.