AFE5832

正在供货

具有 42mW/通道功率、LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE

米6体育平台手机版_好二三四详情

Device type Receiver Number of input channels 32 Active supply current (typ) (mA) 40 Supply voltage (max) (V) 3.3 Operating temperature range (°C) 0 to 85 Interface type LVDS Features Analog Front End (AFE) Rating Catalog
Device type Receiver Number of input channels 32 Active supply current (typ) (mA) 40 Supply voltage (max) (V) 3.3 Operating temperature range (°C) 0 to 85 Interface type LVDS Features Analog Front End (AFE) Rating Catalog
NFBGA (ZBV) 289 225 mm² 15 x 15
  • 32-Channel, AFE for Ultrasound Applications:
    • Input Attenuator, LNA, LPF, ADC,
      and CW Mixer
    • Digital Time Gain Compensation (DTGC)
    • Total Gain Range: 12 dB to 51 dB
    • Linear Input Range: 800 mVPP
  • Input Attenuator With DTGC:
    • 8-dB to 0-dB Attenuation With 0.125-dB Step
    • Supports Matched Impedance for:
      • 50-Ω to 800-Ω Source Impedance
  • Low-Noise Amplifier (LNA) With DTGC:
    • 20-dB to 51-dB Gain With 0.125-dB Step
    • Low Input Current Noise: 1.2 pA/√Hz
  • 3rd-Order, Linear-Phase, Low-Pass Filter (LPF):
    • 5 MHz, 7.5 MHz, 10 MHz, and 12.5 MHz
  • 16 ADCs Converting at 12-Bit, 80 MSPS or 10-bit, 100 MSPS:
    • Each ADC Converts Two Sets of Inputs at Half Rate
    • 12-Bit ADC: 72-dBFS SNR
    • 10-Bit ADC: 61-dBFS SNR
  • Optimized for Noise and Power:
    • 35 mW/Ch at 2.1 nV/√Hz, 40 MSPS
    • 42 mW/Ch at 1.4 nV/√Hz, 40 MSPS
    • 52 mW/Ch at 1.3 nV/√Hz, 40 MSPS
    • 60 mW/Ch in CW Mode
  • Excellent Device-to-Device Gain Matching:
    • ±0.5 dB (Typical)
  • Low Harmonic Distortion: –55 dBc
  • Fast and Consistent Overload Recovery
  • Continuous Wave (CW) Path With:
    • Low Close-In Phase Noise of –151 dBc/Hz
      at 1-kHz Frequency Offset Off 2.5-MHz Carrier
    • Phase Resolution: λ / 16
    • Supports 16X CW Clock
    • 12-dB Suppression on Third and Fifth Harmonics
  • LVDS Interface With a Speed Up to 1 Gbps
  • Small Package: 15-mm × 15-mm NFBGA-289
  • 32-Channel, AFE for Ultrasound Applications:
    • Input Attenuator, LNA, LPF, ADC,
      and CW Mixer
    • Digital Time Gain Compensation (DTGC)
    • Total Gain Range: 12 dB to 51 dB
    • Linear Input Range: 800 mVPP
  • Input Attenuator With DTGC:
    • 8-dB to 0-dB Attenuation With 0.125-dB Step
    • Supports Matched Impedance for:
      • 50-Ω to 800-Ω Source Impedance
  • Low-Noise Amplifier (LNA) With DTGC:
    • 20-dB to 51-dB Gain With 0.125-dB Step
    • Low Input Current Noise: 1.2 pA/√Hz
  • 3rd-Order, Linear-Phase, Low-Pass Filter (LPF):
    • 5 MHz, 7.5 MHz, 10 MHz, and 12.5 MHz
  • 16 ADCs Converting at 12-Bit, 80 MSPS or 10-bit, 100 MSPS:
    • Each ADC Converts Two Sets of Inputs at Half Rate
    • 12-Bit ADC: 72-dBFS SNR
    • 10-Bit ADC: 61-dBFS SNR
  • Optimized for Noise and Power:
    • 35 mW/Ch at 2.1 nV/√Hz, 40 MSPS
    • 42 mW/Ch at 1.4 nV/√Hz, 40 MSPS
    • 52 mW/Ch at 1.3 nV/√Hz, 40 MSPS
    • 60 mW/Ch in CW Mode
  • Excellent Device-to-Device Gain Matching:
    • ±0.5 dB (Typical)
  • Low Harmonic Distortion: –55 dBc
  • Fast and Consistent Overload Recovery
  • Continuous Wave (CW) Path With:
    • Low Close-In Phase Noise of –151 dBc/Hz
      at 1-kHz Frequency Offset Off 2.5-MHz Carrier
    • Phase Resolution: λ / 16
    • Supports 16X CW Clock
    • 12-dB Suppression on Third and Fifth Harmonics
  • LVDS Interface With a Speed Up to 1 Gbps
  • Small Package: 15-mm × 15-mm NFBGA-289

The AFE5832 device is a highly-integrated, analog front-end solution specifically designed for ultrasound systems where high performance, low power, and small size are required.

The AFE5832 is an integrated analog front-end (AFE) optimized for medical ultrasound application. The device is realized through a multichip module (MCM) with three dies: two voltage-controlled amplifier (VCA) dies and one analog-to-digital converter (ADC) die. Each VCA die has 16 channels and the ADC die converts all of the 32 channels.

Each channel in the VCA die is configured in either of two modes: time gain compensation (TGC) mode or continuous wave (CW) mode. In TGC mode, each channel includes an input attenuator (ATTEN), a low-noise amplifier (LNA) with variable-gain, and a third-order, low-pass filter (LPF). The attenuator supports an attenuation range of 8 dB to 0 dB, and the LNA supports gain ranges from 20 dB to 51 dB. The LPF cutoff frequency can be configured at 5 MHz, 7.5 MHz, 10 MHz, or 12.5 MHz to support ultrasound applications with different frequencies. In CW mode, each channel includes an LNA with a fixed gain of 18 dB, and a low-power passive mixer with 16 selectable phase delays. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.

The ADC die has 16 physical ADCs. Each ADC converts two sets of outputs – one from each VCA die. The ADC is configured to operate with a resolution of 12 bits or 10 bits. The ADC resolution can be traded off with conversion rate, and operates at maximum speeds of 80 MSPS and 100 MSPS at 12-bit and 10-bit resolution, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS) which can easily interface with low-cost field-programmable gate arrays (FPGAs).

The AFE5832 also allows various power and noise combinations to be selected for optimizing system performance. Therefore, this device is a suitable ultrasound AFE solution for systems with strict battery-life requirements.

The AFE5832 device is a highly-integrated, analog front-end solution specifically designed for ultrasound systems where high performance, low power, and small size are required.

The AFE5832 is an integrated analog front-end (AFE) optimized for medical ultrasound application. The device is realized through a multichip module (MCM) with three dies: two voltage-controlled amplifier (VCA) dies and one analog-to-digital converter (ADC) die. Each VCA die has 16 channels and the ADC die converts all of the 32 channels.

Each channel in the VCA die is configured in either of two modes: time gain compensation (TGC) mode or continuous wave (CW) mode. In TGC mode, each channel includes an input attenuator (ATTEN), a low-noise amplifier (LNA) with variable-gain, and a third-order, low-pass filter (LPF). The attenuator supports an attenuation range of 8 dB to 0 dB, and the LNA supports gain ranges from 20 dB to 51 dB. The LPF cutoff frequency can be configured at 5 MHz, 7.5 MHz, 10 MHz, or 12.5 MHz to support ultrasound applications with different frequencies. In CW mode, each channel includes an LNA with a fixed gain of 18 dB, and a low-power passive mixer with 16 selectable phase delays. Different phase delays can be applied to each analog input signal to perform an on-chip beamforming operation. A harmonic filter in the CW mixer suppresses the third and fifth harmonic to enhance the sensitivity of the CW Doppler measurement.

The ADC die has 16 physical ADCs. Each ADC converts two sets of outputs – one from each VCA die. The ADC is configured to operate with a resolution of 12 bits or 10 bits. The ADC resolution can be traded off with conversion rate, and operates at maximum speeds of 80 MSPS and 100 MSPS at 12-bit and 10-bit resolution, respectively. The ADC is designed to scale its power with sampling rate. The output interface of the ADC comes out through a low-voltage differential signaling (LVDS) which can easily interface with low-cost field-programmable gate arrays (FPGAs).

The AFE5832 also allows various power and noise combinations to be selected for optimizing system performance. Therefore, this device is a suitable ultrasound AFE solution for systems with strict battery-life requirements.

下载 观看带字幕的视频 视频
申请了解更多信息

可提供完整数据表和其他设计资源。立即申请   

技术文档

star =有关此米6体育平台手机版_好二三四的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 5
类型 标题 下载最新的英语版本 日期
* 数据表 AFE5832 32-Channel Ultrasound AFE With 35-mW/Channel Power, 2.1 nV/√Hz Noise, 12-Bit, 40-MSPS or 10-Bit, 50-MSPS Output, Passive CW Mixer and LVDS Interface 数据表 (Rev. A) PDF | HTML 2018年 4月 19日
应用手册 设计适用于超声波智能探头的双极高压 SEPIC 电源 (Rev. A) PDF | HTML 英语版 (Rev.A) PDF | HTML 2023年 5月 31日
应用简报 AFE5832LP and AFE5832 Ultrasound AFE for Ultra-Portable Applications 2019年 1月 4日
EVM 用户指南 AFE5832 32-Channel Analog Front-End Evaluation Module User's Guide 2017年 8月 25日
应用手册 Introduction to Ultrasound 2017年 7月 10日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估板

AFE5832EVM — AFE5832 具有 LVDS 接口和 CW 无源混频器的 32 通道超声波 AFE 评估模块

AFE5832 评估模块 (EVM) 是一款用于评估 AFE5832 器件的平台。AFE5832 是一款高度集成的模拟前端 (AFE) 解决方案,专为需要实现高性能的小尺寸超声波系统而设计。该器件集成了完整的时间增益控制 (TGC) 成像路径和连续波多普勒 (CWD) 路径。该 32 通道器件支持各种功率和噪声组合,可实现最佳系统性能。因此,AFE5832 是一套适用于高端便携式系统的超声波 AFE 解决方案。

用户指南: PDF
仿真模型

AFE5832LP IBIS Model

SBAM409.ZIP (49 KB) - IBIS Model
模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源米6体育平台手机版_好二三四系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短米6体育平台手机版_好二三四上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)



封装 引脚 CAD 符号、封装和 3D 模型
NFBGA (ZBV) 289 Ultra Librarian

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

推荐米6体育平台手机版_好二三四可能包含与 TI 此米6体育平台手机版_好二三四相关的参数、评估模块或参考设计。

支持和培训

视频