主页 接口 I2C & I3C ICs I2C & I3C level shifters, buffers & hubs

PCA9518

正在供货

5 通道双向 3V 至 3.6V 可扩展 400kHz I2C/SMBus 缓冲器/集线器

米6体育平台手机版_好二三四详情

Features Reset pin Protocols I2C Frequency (max) (MHz) 0.4 VCCA (min) (V) 3 VCCA (max) (V) 3.6 VCCB (min) (V) 3 VCCB (max) (V) 3.6 Supply restrictions VCC Single Supply Rating Catalog Operating temperature range (°C) -40 to 85
Features Reset pin Protocols I2C Frequency (max) (MHz) 0.4 VCCA (min) (V) 3 VCCA (max) (V) 3.6 VCCB (min) (V) 3 VCCB (max) (V) 3.6 Supply restrictions VCC Single Supply Rating Catalog Operating temperature range (°C) -40 to 85
SOIC (DW) 20 131.84 mm² 12.8 x 10.3 SSOP (DB) 20 56.16 mm² 7.2 x 7.8 SSOP (DBQ) 20 51.9 mm² 8.65 x 6 TSSOP (PW) 20 41.6 mm² 6.5 x 6.4
  • Expandable Five-Channel Bidirectional Buffer
  • 400-kHz Fast I2C Bus
  • Operating VCC Range of 3 V to 3.6 V
  • 5-V Tolerant I2C and Enable Input Pins to Support Mixed-Mode Signal Operation
  • Active-High Individual Repeater Enable Inputs
  • Open-Drain Input/Outputs
  • Lockup-Free Operation
  • Supports Multiple Masters
  • Powered-Off High-Impedance I2C Pins
  • I2C Bus and SMBus Compatible
  • Latchup Performance Exceeds 100 mA Per JESD 78
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

All trademarks are the property of their respective owners.

  • Expandable Five-Channel Bidirectional Buffer
  • 400-kHz Fast I2C Bus
  • Operating VCC Range of 3 V to 3.6 V
  • 5-V Tolerant I2C and Enable Input Pins to Support Mixed-Mode Signal Operation
  • Active-High Individual Repeater Enable Inputs
  • Open-Drain Input/Outputs
  • Lockup-Free Operation
  • Supports Multiple Masters
  • Powered-Off High-Impedance I2C Pins
  • I2C Bus and SMBus Compatible
  • Latchup Performance Exceeds 100 mA Per JESD 78
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

All trademarks are the property of their respective owners.

The PCA9518 is an expandable five-channel bidirectional buffer for I2C and SMBus applications. The I2C protocol requires a maximum bus capacitance of 400 pF, which is derived from the number of devices on the I2C bus and the bus length. The PCA9518 overcomes this restriction by separating and buffering the I2C data (SDA) and clock (SCL) lines into multiple groups of 400-pF segments. Any segment-to-segment transition sees only one repeater delay. Each PCA9518 can communicate with other PCA9518 hubs through a 4-wire inter-hub expansion bus. Using multiple PCA9518 parts, any width hub (in multiples of five) can be implemented using the expansion pins, with only one repeater delay and no functional degradation of the system performance.

The PCA9518 does not support clock stretching across the repeater.

The device is designed for 3-V to 3.6-V VCC operation, but it has 5-V tolerant I2C and enable (EN) input pins. This feature allows for translation from 3 V to 5 V between a master and slave. The enable pin also can be used to electrically isolate a repeater segment from the I2C bus. This is useful in cases where one segment needs to run at 100 kHz while the rest of the system is at 400 kHz. If the master is running at 400 kHz, the maximum system operating frequency may be less than 400 kHz, because of the delays added by the repeater.

The output low levels for each internal buffer are approximately 0.5 V, but the input voltage of each internal buffer must be 70 mV or more below the output low level, when the output internally is driven low. This prevents a lockup condition from occurring when the input low condition is released.

A PCA9518 cluster cannot be put in series with a repeater such as the PCA9515 or another PCA9518 cluster, as the design does not allow this configuration. Multiple PCA9518 devices can be grouped with other PCA9518 devices into any size cluster using the EXPxxxx pins that allow the I2C signals to be sent or received from one PCA9518 to another PCA9518 within the cluster. Because there is no direction pin, slightly different valid low voltage levels are used to avoid lockup conditions between the input and the output of individual repeaters in the cluster. A valid low applied at the input of any of the PCA9518 devices is propagated as a buffered low, with a slightly higher value, to all enabled outputs in the PCA9518 cluster. When this buffered low is applied to another repeater or separate PCA9518 cluster (not connected via the EXPxxxx pins) in series, the second repeater or PCA9518 cluster does not recognize it as a regular low and does not propagate it as a buffered low again. For this reason, the PCA9518 should not be put in series with other repeater or PCA9518 clusters.

The PCA9518 has five multidirectional open-drain buffers designed to support the standard low-level-contention arbitration of the I2C bus. Except during arbitration, the PCA9518 acts like a pair of noninverting open-drain buffers, one for SDA and one for SCL.

There is an internal power-on-reset circuit (VPOR) that allows for an initial condition and the ramping of VCC to set the internal logic.

As with the standard I2C system, pullup resistors are required on each SDAn and SCLn to provide the logic high levels on the buffered bus. The size of these pullup resistors depends on the system, but it is essential that each side of the repeater have a pullup resistor. The device is designed to work with standard-mode and fast-mode I2C devices in addition to SMBus devices. Standard-mode I2C devices only specify 3 mA in a generic I2C system where standard-mode devices and multiple masters are possible.

The PCA9518 is an expandable five-channel bidirectional buffer for I2C and SMBus applications. The I2C protocol requires a maximum bus capacitance of 400 pF, which is derived from the number of devices on the I2C bus and the bus length. The PCA9518 overcomes this restriction by separating and buffering the I2C data (SDA) and clock (SCL) lines into multiple groups of 400-pF segments. Any segment-to-segment transition sees only one repeater delay. Each PCA9518 can communicate with other PCA9518 hubs through a 4-wire inter-hub expansion bus. Using multiple PCA9518 parts, any width hub (in multiples of five) can be implemented using the expansion pins, with only one repeater delay and no functional degradation of the system performance.

The PCA9518 does not support clock stretching across the repeater.

The device is designed for 3-V to 3.6-V VCC operation, but it has 5-V tolerant I2C and enable (EN) input pins. This feature allows for translation from 3 V to 5 V between a master and slave. The enable pin also can be used to electrically isolate a repeater segment from the I2C bus. This is useful in cases where one segment needs to run at 100 kHz while the rest of the system is at 400 kHz. If the master is running at 400 kHz, the maximum system operating frequency may be less than 400 kHz, because of the delays added by the repeater.

The output low levels for each internal buffer are approximately 0.5 V, but the input voltage of each internal buffer must be 70 mV or more below the output low level, when the output internally is driven low. This prevents a lockup condition from occurring when the input low condition is released.

A PCA9518 cluster cannot be put in series with a repeater such as the PCA9515 or another PCA9518 cluster, as the design does not allow this configuration. Multiple PCA9518 devices can be grouped with other PCA9518 devices into any size cluster using the EXPxxxx pins that allow the I2C signals to be sent or received from one PCA9518 to another PCA9518 within the cluster. Because there is no direction pin, slightly different valid low voltage levels are used to avoid lockup conditions between the input and the output of individual repeaters in the cluster. A valid low applied at the input of any of the PCA9518 devices is propagated as a buffered low, with a slightly higher value, to all enabled outputs in the PCA9518 cluster. When this buffered low is applied to another repeater or separate PCA9518 cluster (not connected via the EXPxxxx pins) in series, the second repeater or PCA9518 cluster does not recognize it as a regular low and does not propagate it as a buffered low again. For this reason, the PCA9518 should not be put in series with other repeater or PCA9518 clusters.

The PCA9518 has five multidirectional open-drain buffers designed to support the standard low-level-contention arbitration of the I2C bus. Except during arbitration, the PCA9518 acts like a pair of noninverting open-drain buffers, one for SDA and one for SCL.

There is an internal power-on-reset circuit (VPOR) that allows for an initial condition and the ramping of VCC to set the internal logic.

As with the standard I2C system, pullup resistors are required on each SDAn and SCLn to provide the logic high levels on the buffered bus. The size of these pullup resistors depends on the system, but it is essential that each side of the repeater have a pullup resistor. The device is designed to work with standard-mode and fast-mode I2C devices in addition to SMBus devices. Standard-mode I2C devices only specify 3 mA in a generic I2C system where standard-mode devices and multiple masters are possible.

下载 观看带字幕的视频 视频

您可能感兴趣的相似米6体育平台手机版_好二三四

功能与比较器件相似
TCA9545A 正在供货 具有中断、复位和电压转换功能的 4 通道、1.65V 至 5.5V I2C/SMBus 开关 This device has similar functionality in an equivalent package with a wider supply voltage range, reset and interrupt pin capabilities, and improved performance.

技术文档

star =有关此米6体育平台手机版_好二三四的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 13
类型 标题 下载最新的英语版本 日期
* 数据表 PCA9518 Expandable Five-Channel I2C Hub 数据表 (Rev. C) 2014年 6月 12日
应用手册 Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 2024年 7月 3日
应用手册 了解 CMOS 输出缓冲器中的瞬态驱动强度与直流驱动强度 PDF | HTML 最新英语版本 (Rev.A) PDF | HTML 2024年 5月 15日
应用手册 I2C Dynamic Addressing 2019年 4月 25日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Choosing the Correct I2C Device for New Designs PDF | HTML 2016年 9月 7日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
应用手册 Understanding the I2C Bus PDF | HTML 2015年 6月 30日
应用手册 Maximum Clock Frequency of I2C Bus Using Repeaters 2015年 5月 15日
应用手册 I2C Bus Pull-Up Resistor Calculation PDF | HTML 2015年 2月 13日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
应用手册 Programming Fun Lights With TI's TCA6507 2007年 11月 30日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源米6体育平台手机版_好二三四系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短米6体育平台手机版_好二三四上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI — 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是米6体育平台手机版_好二三四 (TI) 专有的 DesignSoft 米6体育平台手机版_好二三四。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

用户指南: PDF
英语版 (Rev.A): PDF
封装 引脚 CAD 符号、封装和 3D 模型
SOIC (DW) 20 Ultra Librarian
SSOP (DB) 20 Ultra Librarian
SSOP (DBQ) 20 Ultra Librarian
TSSOP (PW) 20 Ultra Librarian

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

推荐米6体育平台手机版_好二三四可能包含与 TI 此米6体育平台手机版_好二三四相关的参数、评估模块或参考设计。

支持和培训

视频