SLOS738E September   2012  – August 2015 AFE5809

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Digital Demodulator Electrical Characteristics
    7. 7.7  Digital Characteristics
    8. 7.8  Switching Characteristics
    9. 7.9  SPI Switching Characteristics
    10. 7.10 Output Interface Timing Requirements (14-bit)
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 LNA
      2. 8.3.2 Voltage-Controlled Attenuator
      3. 8.3.3 PGA
      4. 8.3.4 ADC
      5. 8.3.5 Continuous-Wave (CW) Beamformer
        1. 8.3.5.1 16 × ƒcw Mode
        2. 8.3.5.2 8 × ƒcw and 4 × ƒcw Modes
        3. 8.3.5.3 1 × ƒcw Mode
      6. 8.3.6 Digital I/Q Demodulator
      7. 8.3.7 Equivalent Circuits
      8. 8.3.8 LVDS Output Interface Description
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Serial Peripheral Interface (SPI) Operation
        1. 8.5.1.1 ADC/VCA Serial Register Write Description
        2. 8.5.1.2 ADC/VCA Serial Register Readout Description
        3. 8.5.1.3 Digital Demodulator SPI Description
    6. 8.6 Register Maps
      1. 8.6.1 ADC and VCA Register Description
        1. 8.6.1.1 ADC Register Map
        2. 8.6.1.2 AFE5809 ADC Register/Digital Processing Description
          1. 8.6.1.2.1  AVERAGING_ENABLE: Address: 2[11]
          2. 8.6.1.2.2  ADC_OUTPUT_FORMAT: Address: 4[3]
          3. 8.6.1.2.3  ADC Reference Mode: Address 1[13] and 3[15]
          4. 8.6.1.2.4  DIGITAL_GAIN_ENABLE: Address: 3[12]
          5. 8.6.1.2.5  DIGITAL_HPF_ENABLE
          6. 8.6.1.2.6  DIGITAL_HPF_FILTER_K_CHX
          7. 8.6.1.2.7  LOW_FREQUENCY_NOISE_SUPPRESSION: Address: 1[11]
          8. 8.6.1.2.8  LVDS_OUTPUT_RATE_2X: Address: 1[14]
          9. 8.6.1.2.9  CHANNEL_OFFSET_SUBSTRACTION_ENABLE: Address: 3[8]
          10. 8.6.1.2.10 SERIALIZED_DATA_RATE: Address: 3[14:13]
          11. 8.6.1.2.11 TEST_PATTERN_MODES: Address: 2[15:13]
          12. 8.6.1.2.12 SYNC_PATTERN: Address: 10[8]
        3. 8.6.1.3 VCA Register Map
        4. 8.6.1.4 VCA Register Description
          1. 8.6.1.4.1 LNA Input Impedances Configuration (Active Termination Programmability)
          2. 8.6.1.4.2 Programmable Gain for CW Summing Amplifier
          3. 8.6.1.4.3 Programmable Phase Delay for CW Mixer
      2. 8.6.2 Digital Demodulator Register Description
        1. 8.6.2.1 Profile RAM and Coefficient RAM
          1. 8.6.2.1.1 Programming the Profile RAM
          2. 8.6.2.1.2 Procedure for Configuring Next Profile Vector
          3. 8.6.2.1.3 Programming the Coefficient RAM
          4. 8.6.2.1.4 Filter Coefficent Test Mode
          5. 8.6.2.1.5 TX_SYNC and SYNC_WORD Timing
          6. 8.6.2.1.6 FIR Filter Delay versus TX_TRIG Timing
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 LNA Configuration
          1. 9.2.2.1.1 LNA Input Coupling and Decoupling
          2. 9.2.2.1.2 LNA Noise Contribution
          3. 9.2.2.1.3 Active Termination
          4. 9.2.2.1.4 LNA Gain Switch Response
        2. 9.2.2.2 Voltage-Controlled Attenuator
        3. 9.2.2.3 CW Operation
          1. 9.2.2.3.1 CW Summing Amplifier
          2. 9.2.2.3.2 CW Clock Selection
          3. 9.2.2.3.3 CW Supporting Circuits
        4. 9.2.2.4 Low Frequency Support
        5. 9.2.2.5 ADC Operation
          1. 9.2.2.5.1 ADC Clock Configurations
          2. 9.2.2.5.2 ADC Reference Circuit
      3. 9.2.3 Application Curves
    3. 9.3 System Example
      1. 9.3.1 ADC Debug
      2. 9.3.2 VCA Debug
    4. 9.4 Do's and Don'ts
      1. 9.4.1 Driving the Inputs (Analog or Digital) Beyond the Power-Supply Rails
      2. 9.4.2 Driving the Device Signal Input With an Excessively High Level Signal
      3. 9.4.3 Driving the VCNTL Signal With an Excessive Noise Source
      4. 9.4.4 Using a Clock Source With Excessive Jitter, an Excessively Long Input Clock Signal Trace, or Having Other Signals Coupled to the ADC or CW Clock Signal Trace
      5. 9.4.5 LVDS Routing Length Mismatch
      6. 9.4.6 Failure to Provide Adequate Heat Removal
  10. 10Power Supply Recommendations
    1. 10.1 Power/Performance Optimization
    2. 10.2 Power Management Priority
    3. 10.3 Partial Power-Up and Power-Down Mode
    4. 10.4 Complete Power-Down Mode
    5. 10.5 Power Saving in CW Mode
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD –0.3 3.9 V
AVDD_ADC –0.3 2.2
AVDD_5V –0.3 6
DVDD –0.3 2.2
DVDD_LDO –0.3 1.6
Voltage between AVSS and LVSS –0.3 0.3 V
Voltage at analog inputs and digital inputs –0.3 min [3.6, AVDD + 0.3] V
Peak solder temperature(2) 260 °C
Maximum junction temperature (TJ), any condition 105 °C
Operating temperature 0 85 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied Exposure to absolute maximum rated conditions for extended periods may degrade device reliability.
(2) Device complies with JSTD-020D.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
AVDD 3.15 3.6 V
AVDD_ADC 1.7 1.9 V
DVDD 1.7 1.9 V
DVDD_LDO1/2 (internally generated) 1.2 1.4 V
DVDD_LDO1/2 (external supplied) 1.4 1.5 V
AVDD_5V 4.75 5.5 V
Ambient temperature, TA 0 85 °C

7.4 Thermal Information

THERMAL METRIC(1) AFE5809 UNIT
BGA (NFBGA)
135 PINS
RθJA Junction-to-ambient thermal resistance 34.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 5 °C/W
RθJB Junction-to-board thermal resistance 11.5 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 10.8 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

AVDD_5V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, AC-coupled with 0.1 µF at INP and bypassed to ground with 15 nF at INM, No active termination, VCNTL = 0 V, ƒIN = 5 MHz, LNA = 18 dB, PGA = 24 dB, 14 bit, sample rate = 65 MSPS, LPF Filter = 15 MHz, low-noise mode, VOUT = –1 dBFS, Single-ended VCNTL mode, VCNTLM = GND, ADC configured in internal reference mode, internal 500-Ω CW feedback resistor, CMOS CW clocks, at ambient temperature, TA = 25°C, Digital demodulator is disabled unless otherwise noted. Min and max values are specified across full-temperature range with AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TGC FULL SIGNAL CHANNEL (LNA + VCAT + LPF + ADC)
en (RTI) Input voltage noise over LNA gain (low-noise mode) Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 24 dB 0.76, 0.83, 1.16 nV/rtHz
Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 30 dB 0.75, 0.86, 1.12
Input voltage noise over LNA gain (low-power mode) Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 24 dB 1.1, 1.2, 1.45 nV/rtHz
Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 30 dB 1.1, 1.2, 1.45
Input voltage noise over LNA gain (medium-power mode) Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 24 dB 1, 1.05, 1.25 nV/rtHz
Rs = 0 Ω, ƒ = 2 MHz, LNA = 24, 18, 12 dB, PGA = 30 dB 0.95, 1, 1.2
en (RTI) Input voltage noise at low frequency ƒ = 100 kHz, INM capacitor = 1 µF, PGA integrator disabled 0.9 nV/rtHz
Input referred current noise Low-noise mode/medium-power mode/low-power mode 2.7, 2.1, 2 pA/rtHz
NF Noise figure Rs = 200 Ω, 200-Ω active termination, PGA = 24 dB, LNA = 12, 18, 24 dB 3.85, 2.4, 1.8 dB
Rs = 100 Ω, 100-Ω active termination, PGA = 24 dB, LNA = 12, 18, 24 dB 5.3, 3.1, 2.3 dB
NF Noise figure Rs = 500 Ω, 1 kΩ, no termination, low-NF mode is enabled (Reg53[9] = 1) 0.94, 1.08 dB
NF Noise figure Rs = 50 Ω / 200 Ω, no termination, low-noise mode (Reg53[9] = 0) 2.35, 1.05 dB
VMAX Maximum linear input voltage LNA gain = 24, 18, 12 dB 250, 500, 1000 mVpp
VCLAMP Clamp voltage Reg52[10:9] = 0, LNA = 24, 18, 12 dB 350, 600, 1150
PGA gain Low-noise mode 24, 30 dB
Medium-power/low-power mode 24, 28.5
Total gain LNA = 24 dB, PGA = 30 dB, low-noise mode 54 dB
LNA = 24 dB, PGA = 30 dB, medium-power mode 52.5
LNA = 24 dB, PGA = 30 dB, low-power mode 52.5
Ch-CH noise correlation factor without signal (2) Summing of 8 channels 0
Ch-CH noise correlation factor with signal (2) Full band (VCNTL = 0, 0.8) 0.15, 0.17
1-MHz band over carrier (VCNTL= 0, 0.8) 0.18, 0.75
Signal-to-noise ratio (SNR) VCNTL= 0.6 V (22-dB total channel gain) 68 70 dBFS
VCNTL= 0, LNA = 18 dB, PGA = 24 dB 59.3 63
VCNTL= 0, LNA = 24 dB, PGA = 24 dB 58
Narrow-band SNR SNR over 2-MHz band around carrier at VCNTL = 0.6 V (22-dB total gain) 75 77 dBFS
Input common-mode voltage At INP and INM pins 2.4 V
Input resistance 8
Preset active termination enabled 50,100,200,400 Ω
Input capacitance 20 pF
Input control voltage VCNTLP – VCNTLM 0 1.5 V
Common-mode voltage VCNTLP and VCNTLM 0.75 V
Gain range –40 dB
Gain slope VCNTL= 0.1 to 1.1 V 35 dB/V
Input resistance Between VCNTLP and VCNTLM 200
Input capacitance Between VCNTLP and VCNTLM 1 pF
TGC response time VCNTL= 0- to 1.5-V step function 1.5 µs
Third-order LPF 10, 15, 20, 30 MHz
Settling time for change in LNA gain 14 µs
Settling time for change in active termination setting 1 µs
AC ACCURACY
LPF bandwidth tolerance ±5%
CH-CH group delay variation 2 to 15 MHz 2 ns
CH-CH phase variation 15-MHz signal 11 °
Gain matching 0 V < VCNTL< 0.1 V (Dev-to-Dev) ±0.5 dB
0.1 V < VCNTL< 1.1 V(Dev-to-Dev), TA = 25°C –1 ±0.5 1
1.1 V < VCNTL< 1.5 V (Dev-to-Dev) ±0.5
0.1 V < VCNTL< 1.1 V (Dev-to-Dev), TA = 0°C and 85°C –1.1 1.1
Gain matching Channel-to-channel ±0.25 dB
Output offset VCNTL= 0, PGA = 30 dB, LNA = 24 dB –75 75 LSB
AC PERFORMANCE
HD2 Second-harmonic distortion FIN = 2 MHz; VOUT = –1 dBFS –60 dBc
FIN = 5 MHz; VOUT = –1 dBFS –60
FIN = 5 MHz; VIN= 500 mVPP,
VOUT = –1 dBFS, LNA = 18 dB, VCNTL= 0.88 V
–55
FIN = 5 MHz; VIN = 250 mVPP,
VOUT = –1 dBFS, LNA = 24 dB, VCNTL= 0.88 V
–55
HD3 Third-harmonic distortion FIN = 2 MHz; VOUT = –1 dBFS –55 dBc
FIN = 5 MHz; VOUT = –1 dBFS –55
FIN = 5 MHz; VIN = 500 mVPP,
VOUT = –1 dBFS, LNA = 18 dB, VCNTL = 0.88 V
–55
FIN = 5 MHz; VIN = 250 mVPP,
VOUT = –1dBFS, LNA = 2 4dB, VCNTL= 0.88 V
–55
THD Total harmonic distortion FIN = 2 MHz; VOUT = –1 dBFS –55 dBc
FIN = 5 MHz; VOUT = – 1dBFS –55
IMD3 Intermodulation distortion ƒ1 = 5 MHz at –1 dBFS,
ƒ2 = 5.01 MHz at –27 dBFS
–60 dBc
XTALK Cross-talk FIN = 5 MHz; VOUT= –1 dBFS –65 dB
Phase noise kHz off 5 MHz (VCNTL= 0 V) –132 dBc/Hz
LNA
Input referred voltage noise Rs = 0 Ω, ƒ = 2 MHz, Rin = High Z, Gain = 24, 18, 12 dB 0.63, 0.70, 0.9 nV/rtHz
High-pass filter (HPF) –3 dB cut-off frequency 50, 100, 150, 200 kHz
LNA linear output 4 Vpp
VCAT+ PGA
VCAT input noise 0-dB, –40-dB attenuation 2, 10.5 nV/rtHz
PGA input noise 24 dB, 30 dB 1.75 nV/rtHz
–3 dB HPF cut-off frequency 80 kHz
CW DOPPLER
en (RTI) Input voltage noise (CW) 1-channel mixer, LNA = 24 dB, 500-Ω feedback resistor 0.8 nV/rtHz
8-channel mixer, LNA = 24 dB, 62.5-Ω feedback resistor 0.33
en (RTO) Output voltage noise (CW) 1-channel mixer, LNA = 24 dB, 500-Ω feedback resistor 12 nV/rtHz
8-channel mixer, LNA = 24 dB, 62.5-Ω feedback resistor 5
en (RTI) Input voltage noise (CW) 1-channel mixer, LNA = 18 dB, 500-Ω feedback resistor 1.1 nV/rtHz
8-channel mixer, LNA = 18 dB, 62.5-Ω feedback resistor 0.5
en (RTO) Output voltage noise (CW) 1-channel mixer, LNA = 18 dB, 500-Ω feedback resistor 8.1 nV/rtHz
8-channel mixer, LNA = 18 dB, 62.5-Ω feedback resistor 4
NF Noise figure Rs = 100 Ω, RIN = High Z, FIN = 2 MHz (LNA, I/Q mixer and summing amplifier/filter) 1.8 dB
fCW CW operation range (3) CW signal carrier frequency 8 MHz
CW clock frequency 1× CLK (16× mode) 8 MHz
16× CLK(16× mode) 128
4× CLK(4× mode) 32
AC coupled LVDS clock amplitude CLKM_16X-CLKP_16X; CLKM_1X-CLKP_1X 0.7 Vpp
AC coupled LVPECL clock amplitude 1.6
CLK duty cycle 1× and 16× CLKs 35% 65%
Common-mode voltage Internal provided 2.5 V
VCMOS CMOS input clock amplitude 4 5 V
CW mixer conversion loss 4 dB
CW mixer phase noise 1 kHz off 2-MHz carrier 156 dBc/Hz
DR Input dynamic range FIN = 2 MHz, LNA = 24/18/12 dB 160, 164, 165 dBFS/Hz
IMD3 Intermodulation distortion ƒ1 = 5 MHz, ƒ2 = 5.01 MHz, both tones at –8.5-dBm amplitude, 8 channels summed up in-phase, CW feedback resistor = 87 Ω –50 dBc
ƒ1 = 5 MHz, ƒ2= 5.01 MHz, both tones at –8.5-dBm amplitude, single-channel case, CW feedback resistor = 500 Ω –60 dBc
I/Q channel gain matching 16× mode ±0.04 dB
I/Q channel phase matching 16× mode ±0.1 °
I/Q channel gain matching 4× mode ±0.04 dB
I/Q channel phase matching 4× mode ±0.1 °
Image rejection ratio FIN = 2.01 MHz, 300-mV input amplitude, CW clock frequency = 2 MHz –50 dBc
CW SUMMING AMPLIFIER
VCMO Common-mode voltage Summing amplifier inputs and outputs 1.5 V
Summing amplifier output 4 Vpp
Input referred voltage noise 100 Hz 2 nV/rtHz
1 kHz 1.2 nV/rtHz
2 kHz to 100 MHz 1 nV/rtHz
Input referred current noise 2.5 pA/rtHz
Unit gain bandwidth 200 MHz
Max output current Linear operation range 20 mApp
ADC SPECIFICATIONS
Sample rate 10 65 MSPS
SNR Signal-to-noise ratio Idle channel SNR of ADC 14b 77 dBFS
Internal reference mode REFP 1.5 V
REFM 0.5 V
External reference mode VREF_IN voltage 1.4 V
VREF_IN current 50 µA
ADC input full-scale range 2 Vpp
LVDS rate 65 MSPS at 14 bit 910 Mbps
POWER DISSIPATION
AVDD voltage 3.15 3.3 3.6 V
AVDD_ADC voltage 1.7 1.8 1.9 V
AVDD_5V voltage 4.75 5 5.5 V
DVDD voltage 1.7 1.8 1.9 V
Total power dissipation per channel TGC low-noise mode, 65 MSPS 158 190 mW/CH
TGC low-noise mode, 40 MSPS 145
TGC medium-power mode, 40 MSPS 114
TGC low-power mode, 40 MSPS 101.5
AVDD (3.3-V) current TGC low-noise mode, no signal 202 240 mA
TGC medium-power mode, no signal 126
TGC low-power mode, no signal 99
CW-mode, no signal 147 170
TGC low-noise mode, 500 mVPP Input,1% duty cycle 210
TGC medium-power mode, 500 mVPP Input, 1% duty cycle 133
TGC low power, 500 mVPP Input, 1% duty cycle 105
CW-mode, 500 mVPP Input 375
AVDD_5V current TGC mode no signal 25.5 35 mA
CW mode no signal, 16× clock = 32 MHz 32
TGC mode, 500-mVpp Input,1% duty cycle 26
CW-mode, 500-mVpp input 42.5
VCA power dissipation TGC low-noise mode, no signal 99 121 mW/CH
TGC medium-power mode, no signal 68
TGC low-power mode, no signal 55.5
TGC low-noise mode, 500-mVPP input,1% duty cycle 102.5
TGC medium-power mode, 500-mVPP Input, 1% duty cycle 71
TGC low-power mode, 500-mVpp input,1% duty cycle 59.5
CW power dissipation No signal, ADC shutdown CW mode no signal, 16× clock = 32 MHz 80 mW/CH
500-mVPP input, ADC shutdown , 16× clock = 32 MHz 173
AVDD_ADC (1.8-V) current 65MSPS 187 205 mA
DVDD (1.8-V) current 65 MSPS 77 110 mA
ADC power dissipation/CH 65 MSPS 59 69 mW/CH
50 MSPS 51
40 MSPS 46
20 MSPS 35
Power dissipation in power-down mode PDN_VCA = High, PDN_ADC = High 25 mW/CH
Complete power-down PDN_Global = High 0.6
Power-down response time Time taken to enter power down 1 µs
Power-up response time VCA power down 2 µs + 1% of PDN time µs
ADC power down 1
Complete power down 2.5 ms
Power supply modulation ratio, AVDD and AVDD_5V FIN = 5 MHz, at 50 mVPP noise at 1 kHz on supply(1) –65 dBc
FIN = 5 MHz, at 50 mVpp noise at 50 kHz on supply(1) –65
Power supply rejection ratio ƒ = 10 kHz,VCNTL = 0 V (high gain), AVDD –40 dBc
ƒ = 10 kHz,VCNTL = 0 V (high gain), AVDD_5 V –55 dBc
ƒ = 10 kHz,VCNTL = 1 V (low gain), AVDD –50 dBc
(1) PSMR specification is with respect to carrier signal amplitude.
(2) Noise correlation factor is defined as Nc / (Nu + Nc), where Nc is the correlated noise power in single channel; and Nu is the uncorrelated noise power in single channel. Its measurement follows the below equation, in which the SNR of single-channel signal and the SNR of summed eight-channel signal are measured.
AFE5809 EQ_nc_los688.gif
(3) In the 16× operation mode, the CW operation range is limited to 8 MHz due to the 16× CLK. The maximum clock frequency for the 16× CLK is 128 MHz. In the 8×, 4×, and 1× modes, higher CW signal frequencies up to 15 MHz can be supported with small degradation in performance, see CW Clock Selection.

7.6 Digital Demodulator Electrical Characteristics

AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, DVDD_LDO = 1.4 V (internal generated), 14 bit/65 MSPS, 4× decimation factor, at ambient temperature TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Additional power consumption on DVDD (1.8 V) 65 MSPS, 4× decimation factor 90 mW/CH
Additional power consumption on DVDD (1.8 V) 40 MSPS, 4× decimation factor 61 mW/CH
Additional power consumption on DVDD (1.8 V) 65 MSPS, 32× decimation factor, half LVDS pairs are powered down 77 mW/CH
Additional power consumption on DVDD (1.8 V) 40 MSPS, 32× decimation factor, half LVDS pairs are powered down 55 mW/CH
VIH Logic high input voltage, TX_SYNC pin Support 1.8-V and 3.3-V CMOS logic 1.3 3.3 V
VIL Logic low input voltage, TX_SYNC pin Support 1.8-V and 3.3-V CMOS logic 0 0.3 V
IIH Logic high input current, TX_SYNC pin VHIGH = 1.8 V 11 µA
IIL Logic low input current, TX_SYNC pin VLOW = 0 V < 0.1 µA
VIH Logic high input voltage, LDO_EN pin 1.7 3.3 V
VIL Logic low input voltage, LDO_EN pin 0 0.3 V
IIH Logic high input current, LDO_EN pin VHIGH = 1.8 V 11 µA
IIL Logic low input current, LDO_EN pin VLOW = 0 V < 0.1 µA

7.7 Digital Characteristics

Typical values are at 25°C, AVDD = 3.3 V, AVDD_5 = 5 V and AVDD_ADC = 1.8 V, DVDD = 1.8 V unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = 0°C to TMAX = 85°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT(1)
DIGITAL INPUTS/OUTPUTS
VIH Logic high input voltage 2 3.3 V
VIL Logic low input voltage 0 0.3 V
Logic high input current 200 µA
Logic low input current 200 µA
Input capacitance 5 pF
VOH Logic high output voltage SDOUT pin DVDD V
VOL Logic low output voltage SDOUT pin 0 V
LVDS OUTPUTS
Output differential voltage With 100-Ω external differential termination 400 mV
Output offset voltage Common-mode voltage 1100 mV
FCLKP and FCLKM 1× clock rate 10 65 MHz
DCLKP and DCLKM 7× clock rate 70 455 MHz
6× clock rate 60 390 MHz
tsu Data setup time(2) 350 ps
th Data hold time(2) 350 ps
ADC INPUT CLOCK
Clock frequency 10 65 MSPS
Clock duty cycle 45% 50% 55%
Clock input amplitude, differential(VCLKP_ADC – VCLKM_ADC) Sine-wave, AC-coupled 0.5 Vpp
LVPECL, AC-coupled 1.6 Vpp
LVDS, AC-coupled 0.7 Vpp
Common-mode voltage Biased internally 1 V
Clock input amplitude VCLKP_ADC (single-ended) CMOS clock 1.8 Vpp
(1) The DC specifications refer to the condition where the LVDS outputs are not switching, but are permanently at a valid logic level 0 or 1 with 100-Ω external termination.
(2) Setup and hold time specifications take into account the effect of jitter on the output data and clock. These specifications also assume that the data and clock paths are perfectly matched within the receiver. Any mismatch in these paths within the receiver would appear as reduced timing margins

7.8 Switching Characteristics

AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V. Typical values are at 25°C, Differential clock, CLOAD = 5 pF, RLOAD = 100 Ω, 14 bit, sample rate = 65 MSPS, digital demodulator is disabled, unless otherwise noted. Minimum and maximum values are across the full temperature range TMIN = 0°C to TMAX = 85°C.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ta Aperture delay The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs. 0.7 3 ns
Aperture delay matching Across channels within the same device ±150 ps
tj Aperture jitter 450 Fs rms
ADC latency Default, after reset, or / 0 x 2 [12] = 1, LOW_LATENCY = 1 11/8 Input clock cycles
tdelay Data and frame clock delay Input clock rising edge (zero cross) to frame clock rising edge (zero cross) minus 3/7 of the input clock period (T) 3 5.4 7 ns
Δtdelay Delay variation At fixed supply and 20°C T difference; device to device –1 1 ns
tRISE Data rise time Rise time measured from –100 to 100 mV 0.14 ns
tFALL Data fall time Fall time measured from 100 to –100 mV 10 MHz < ƒCLKIN < 65 MHz 0.15
tFCLKRISE Frame clock rise time Rise time measured from –100 to 100 mV 0.14 ns
tFCLKFALL Frame clock fall time Fall time measured from 100 to –100 mV 10 MHz < ƒCLKIN < 65 MHz 0.15
Frame clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge 48% 50% 52%
tDCLKRISE Bit clock rise time Rise time measured from –100 to 100 mV 0.13 ns
tDCLKFALL Bit clock fall time Fall time measured from 100 to –100 mV 10 MHz < ƒCLKIN < 65 MHz 0.12
Bit clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge 10 MHz < ƒCLKIN < 65 MHz 46% 54%
(1) Timing parameters are ensured by design and characterization; not production tested.

7.9 SPI Switching Characteristics

Minimum values across full temperature range TMIN = 0°C to TMAX = 85°C, AVDD_5V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V
PARAMETER MIN TYP MAX UNIT
t1 SCLK period 50 ns
t2 SCLK high time 20 ns
t3 SCLK low time 20 ns
t4 Data setup time 5 ns
t5 Data hold time 5 ns
t6 SEN fall to SCLK rise 8 ns
t7 Time between last SCLK rising edge to SEN rising edge 8 ns
t8 SDOUT delay 12 20 28 ns

7.10 Output Interface Timing Requirements (14-bit)

ƒCLKIN,
Input Clock Frequency(1)(2)(3)
Setup Time (tsu), ns Hold Time (th), ns tPROG = (3/7) × T + tdelay, ns
Data Valid to Bit Clock Zero-Crossing Bit Clock Zero-Crossing to Data Invalid Input Clock Zero-Cross (Rising Edge) to Frame Clock Zero-Cross (Rising Edge)
MHz MIN TYP MAX MIN TYP MAX MIN TYP MAX
65 0.24 0.37 0.24 0.38 11 12 12.5
50 0.41 0.54 0.46 0.57 13 13.9 14.4
40 0.55 0.70 0.61 0.73 15 16 16.7
30 0.87 1.10 0.94 1.1 18.5 19.5 20.1
20 1.30 1.56 1.46 1.6 25.7 26.7 27.3
(1) FCLK timing is the same as for the output data lines. It has the same relation to DCLK as the data pins. Setup and hold are the same for the data and frame clock.
(2) Data valid is logic high = 100 mV and logic low = –100 mV
(3) Timing parameters are ensured by design and characterization; not production tested.

SPACER

NOTE

The data from Output Interface Timing Requirements (14-bit) can be applied to 12-bit or 16-bit LVDS rates as well. For example, the maximum LVDS output rate at 65 MHz and 14-bit is equal to 910 MSPS, which is approximately equivalent to the rate at 56 MHz and 16 bits.

AFE5809 LVDS_tim_los688.gifFigure 1. LVDS Timing Diagrams

7.11 Typical Characteristics

AVDD_5 V = 5 V, AVDD = 3.3 V, AVDD_ADC = 1.8 V, DVDD = 1.8 V, AC-coupled with 0.1-µF capacitors at INP and 15-nF capacitors at INM, No active termination, VCNTL = 0 V, FIN = 5 MHz, LNA = 18 dB, PGA = 24 dB, 14 bit, sample rate = 65 MSPS, LPF filter = 15 MHz, low-noise mode, Single-ended VCNTL mode, VCNTLM = GND, ADC is configured in internal reference mode, VOUT = –1 dBFS, 500-Ω CW feedback resistor, CMOS 16× clock, digital demodulator is disabled, at ambient temperature TA = 25°C, unless otherwise noted.
AFE5809 Fig2_slos729.pngFigure 2. Gain vs VCNTL, LNA = 18 dB and PGA = 24 dB
AFE5809 figure4_slos729.pngFigure 4. Gain Matching Histogram, VCNTL = 0.3 V (34951 Channels)
AFE5809 figure6_slos729.pngFigure 6. Gain Matching Histogram, VCNTL = 0.9 V (34951 Channels)
AFE5809 gr_input_impedance_mag_response_open_LOS738.gifFigure 8. Input Impedance Without Active Termination (Magnitude)
AFE5809 gr_input_impedance_mag_response_LOS738.gifFigure 10. Input Impedance With Active Termination (Magnitude)
AFE5809 Figure 12 lpf.pngFigure 12. LPF Response
AFE5809 gr_full_channel_hpf_LOS738.gifFigure 14. Full Channel HPF Response at Default Register Setting
AFE5809 gr_CW_PN_1CH_8CH_LOS738.gifFigure 16. CW Phase Noise, FIN = 2 MHz, 1 Channel vs 8 Channel
AFE5809 Fig18_slos729.pngFigure 18. IRN, PGA = 24 dB and Low Noise Mode
AFE5809 Fig20_slos729.pngFigure 20. IRN, PGA = 24 dB and Medium-Power Mode
AFE5809 Fig22_slos729.pngFigure 22. IRN, PGA = 24 dB and Low-Power Mode
AFE5809 Fig24_slos729.pngFigure 24. ORN, PGA = 24 dB and Low Noise Mode
AFE5809 Fig26_slos729.pngFigure 26. ORN, PGA = 24 dB and Low-Power Mode
AFE5809 Fig28_slos729.pngFigure 28. ORN, PGA = 24 dB and Low Noise Mode
AFE5809 Fig30_slos729.pngFigure 30. SNR, LNA = 18 dB and Low-Power Mode
AFE5809 Fig32_slos729.pngFigure 32. Noise Figure, LNA = 12 dB and Low Noise Mode
AFE5809 Fig34_slos729.pngFigure 34. Noise Figure, LNA = 24 dB and Low Noise Mode
AFE5809 figure37_los738.pngFigure 36. Noise Figure vs Power Modes Without Termination
AFE5809 Fig38_slos729.pngFigure 38. HD3 vs Frequency, VIN = 500 mVpp and
VOUT = –1 dBFS
AFE5809 Fig40_slos729.pngFigure 40. HD3 vs Gain, LNA = 12 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig42_slos729.pngFigure 42. HD3 vs Gain, LNA = 18 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig44_slos729.pngFigure 44. HD3 vs Gain, LNA = 24 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig46_slos729.pngFigure 46. IMD3, Fout1 = –7 dBFS and Fout2 = –7 dBFS
AFE5809 gr_psmr_5v_5MHz_IF_LOS738.gifFigure 48. AVDD_5V Power Supply Modulation Ratio,
100 mVpp Supply Noise With Different Frequencies
AFE5809 gr_psrr_5v_LOS738.gifFigure 50. AVDD_5V Power Supply Rejection Ratio,
100 mVpp Supply Noise With Different Frequencies
AFE5809 Figure 53 Vcon_rising_step_response.png
Figure 52. VCNTL Response Time, LNA = 18 dB and
PGA = 24 dB
AFE5809 Figure 55 neg_inp_wave_exp.pngFigure 54. Pulse Inversion Asymmetrical Negative Input
AFE5809 Figure 57 100dB_overload.pngFigure 56. Overload Recovery Response vs INM Capacitor, VIN = 50 mVpp/100 µVpp, Max Gain
AFE5809 DigitalHigh_passFR_slos729.pngFigure 58. Digital HPF Response
AFE5809 Fig3_slos729.pngFigure 3. Gain Variation vs Temperature, LNA = 18 dB and PGA = 24 dB
AFE5809 figure5_slos729.pngFigure 5. Gain Matching Histogram, VCNTL = 0.6 V (34951 Channels)
AFE5809 figure7_slos729.pngFigure 7. Output Offset Histogram, VCNTL = 0 V (1247 Channels)
AFE5809 gr_input_impedance_phase_response_open_LOS738.gifFigure 9. Input Impedance Without Active Termination (Phase)
AFE5809 gr_input_impedance_phase_response_LOS738.gifFigure 11. Input Impedance With Active Termination (Phase)
AFE5809 gr_hpf_vcaoff_LOS738.gifFigure 13. LNA HPF Response vs Reg59[3:2]
AFE5809 gr_CW_PN_1CH_LOS738.gifFigure 15. CW Phase Noise, FIN = 2 MHz
AFE5809 gr_CW_PN_8CH_LOS738.gifFigure 17. CW Phase Noise vs Clock Modes, FIN= 2 MHz
AFE5809 Fig19_slos729.pngFigure 19. IRN, PGA = 24 dB and Low Noise Mode
AFE5809 Fig21_slos729.pngFigure 21. IRN, PGA = 24 dB and Medium-Power Mode
AFE5809 Fig23_slos729.pngFigure 23. IRN, PGA = 24 dB and Low-Power Mode
AFE5809 Fig25_slos729.pngFigure 25. ORN, PGA = 24 dB and Medium-Power Mode
AFE5809 Fig28_IRN_fre_los738.pngFigure 27. IRN, PGA = 24 dB and Low Noise Mode
AFE5809 Fig29_slos729.pngFigure 29. SNR, LNA = 18 dB and Low Noise Mode
AFE5809 Fig31_slos729.pngFigure 31. SNR vs Different Power Modes
AFE5809 Fig33_slos729.pngFigure 33. Noise Figure, LNA = 18 dB and Low Noise Mode
AFE5809 Figure36_los738.pngFigure 35. Noise Figure vs Power Modes With 400-Ω Termination
AFE5809 Fig37_slos729.pngFigure 37. HD2 vs Frequency, VIN = 500 mVpp and
VOUT = –1 dBFS
AFE5809 Fig39_slos729.pngFigure 39. HD2 vs Gain, LNA = 12 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig41_slos729.pngFigure 41. HD2 vs Gain, LNA = 18 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig43_slos729.pngFigure 43. HD2 vs Gain, LNA = 24 dB and PGA = 24 dB and VOUT = –1 dBFS
AFE5809 Fig45_slos729.pngFigure 45. IMD3, Fout1 = –7 dBFS and Fout2 = –21 dBFS
AFE5809 gr_psmr_3v_5MHz_IF_LOS738.gifFigure 47. AVDD Power Supply Modulation Ratio, 100 mVpp Supply Noise With Different Frequencies
AFE5809 gr_psrr_3v_LOS738.gifFigure 49. AVDD Power Supply Rejection Ratio, 100 mVpp Supply Noise With Different Frequencies
AFE5809 Figure 52 Vcon_falling_step_response.png
Figure 51. VCNTL Response Time, LNA = 18 dB and
PGA = 24 dB
AFE5809 Figure 54 pos_inp_wave_exp.pngFigure 53. Pulse Inversion Asymmetrical Positive Input
AFE5809 Figure 56 pulse_inversion.pngFigure 55. Pulse Inversion, VIN = 2 Vpp, PRF = 1 kHz,
Gain = 21 dB
AFE5809 Figure 58 100dB_overload_zoomed.pngFigure 57. Overload Recovery Response vs INM Capacitor (Zoomed), VIN = 50 mVpp/100 µVpp, Max Gain
AFE5809 PGA_INGTR_los738.pngFigure 59. Signal Chain Low Frequency Response With INM Capacitor = 1 µF