SLVSH22 May   2024 DRV8000-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information RGZ package
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 External Components
    4. 7.4 Feature Description
      1. 7.4.1 Heater MOSFET Driver
        1. 7.4.1.1 Heater MOSFET Driver Control
        2. 7.4.1.2 Heater MOSFET Driver Protection
          1. 7.4.1.2.1 Heater SH_HS Internal Diode
          2. 7.4.1.2.2 Heater MOSFET VDS Overcurrent Protection (HEAT_VDS)
          3. 7.4.1.2.3 Heater MOSFET Open Load Detection
      2. 7.4.2 High-side Drivers
        1. 7.4.2.1 High-side Driver Control
          1. 7.4.2.1.1 High-side Driver PWM Generator
          2. 7.4.2.1.2 Constant Current Mode
          3. 7.4.2.1.3 OUT7 HS ITRIP Behavior
          4. 7.4.2.1.4 High-side Drivers - Parallel Outputs
        2. 7.4.2.2 High-side Driver Protection Circuits
          1. 7.4.2.2.1 High-side Drivers Internal Diode
          2. 7.4.2.2.2 High-side Driver Over Current Protection
          3. 7.4.2.2.3 High-side Driver Open Load Detection
      3. 7.4.3 Electro-chromic Glass Driver
        1. 7.4.3.1 Electro-chromic Driver Control
        2. 7.4.3.2 Electro-chromic Driver Protection
      4. 7.4.4 Half-bridge Drivers
        1. 7.4.4.1 Half-bridge Control
        2. 7.4.4.2 Half-bridge ITRIP Regulation
        3. 7.4.4.3 Half-bridge Protection and Diagnostics
          1. 7.4.4.3.1 Half-bridge Off-State Diagnostics (OLP)
          2. 7.4.4.3.2 Half-Bridge Active Open Load Detection (OLA)
          3. 7.4.4.3.3 Half-Bridge Over-Current Protection
      5. 7.4.5 Gate Drivers
        1. 7.4.5.1 Input PWM Modes
          1. 7.4.5.1.1 Half-Bridge Control
          2. 7.4.5.1.2 H-Bridge Control
          3. 7.4.5.1.3 DRVOFF - Gate Driver Shutoff Pin
        2. 7.4.5.2 Smart Gate Driver - Functional Block Diagram
          1. 7.4.5.2.1  Smart Gate Driver
          2. 7.4.5.2.2  Functional Block Diagram
          3. 7.4.5.2.3  Slew Rate Control (IDRIVE)
          4. 7.4.5.2.4  Gate Driver State Machine (TDRIVE)
            1. 7.4.5.2.4.1 tDRIVE Calculation Example
          5. 7.4.5.2.5  Propagation Delay Reduction (PDR)
          6. 7.4.5.2.6  PDR Pre-Charge/Pre-Discharge Control Loop Operation Details
            1. 7.4.5.2.6.1 PDR Pre-Charge/Pre-Discharge Setup
          7. 7.4.5.2.7  PDR Post-Charge/Post-Discharge Control Loop Operation Details
            1. 7.4.5.2.7.1 PDR Post-Charge/Post-Discharge Setup
          8. 7.4.5.2.8  Detecting Drive and Freewheel MOSFET
          9. 7.4.5.2.9  Automatic Duty Cycle Compensation (DCC)
          10. 7.4.5.2.10 Closed Loop Slew Time Control (STC)
            1. 7.4.5.2.10.1 STC Control Loop Setup
        3. 7.4.5.3 Tripler (Double-Stage) Charge Pump
        4. 7.4.5.4 Wide Common Mode Differential Current Shunt Amplifier
        5. 7.4.5.5 Gate Driver Protection Circuits
          1. 7.4.5.5.1 MOSFET VDS Overcurrent Protection (VDS_OCP)
          2. 7.4.5.5.2 Gate Driver Fault (VGS_GDF)
          3. 7.4.5.5.3 Offline Short Circuit and Open Load Detection (OOL and OSC)
      6. 7.4.6 Sense Output (IPROPI)
      7. 7.4.7 Protection Circuits
        1. 7.4.7.1 Fault Reset (CLR_FLT)
        2. 7.4.7.2 DVDD Logic Supply Power on Reset (DVDD_POR)
        3. 7.4.7.3 PVDD Supply Undervoltage Monitor (PVDD_UV)
        4. 7.4.7.4 PVDD Supply Overvoltage Monitor (PVDD_OV)
        5. 7.4.7.5 VCP Charge Pump Undervoltage Lockout (VCP_UV)
        6. 7.4.7.6 Thermal Clusters
        7. 7.4.7.7 Watchdog Timer
        8. 7.4.7.8 Fault Detection and Response Summary Table
    5. 7.5 Programming
      1. 7.5.1 SPI Interface
      2. 7.5.2 SPI Format
      3. 7.5.3 Timing Diagrams
  9. DRV8000-Q1 Register Map
  10. DRV8000-Q1_STATUS Registers
  11. 10DRV8000-Q1_CNFG Registers
  12. 11DRV8000-Q1_CTRL Registers
  13. 12Application and Implementation
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
    3. 12.3 Initialization Setup
    4. 12.4 Power Supply Recommendations
      1. 12.4.1 Bulk Capacitance Sizing
    5. 12.5 Layout
      1. 12.5.1 Layout Guidelines
      2. 12.5.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Package Option Addendum
    2. 15.2 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Tripler (Double-Stage) Charge Pump

The high-side gate drive voltage for the external MOSFET is generated using a tripler (dual-stage) charge pump that operates from the PVDD voltage supply input. The charge pump allows the high-side and low-side gate drivers to properly bias the external N-channel MOSFETs with respect to its source voltage across a wide input supply voltage range. The charge pump output is regulated (VVCP) to maintain a fixed voltage respect to VPVDD. The charge pump is continuously monitored for an undervoltage (VCP_UV) event to prevent under driven MOSFET conditions or in case of a short circuit condition.

The charge pump provides several configuration options. By default the charge pump will automatically switch between tripler (dual-stage) mode and doubler (single-stage) mode after the PVDD pin voltage crosses the VCP_SO threshold in order to reduce power dissipation. The charge pump can also be configured to always remain in tripler or doubler mode through the SPI register setting CP_MODE.

The charge pumps requires a low ESR, 1-µF, 16-V ceramic capacitor (X7R recommended) between the PVDD and VCP pins to act as the storage capacitor. Additionally, a low ESR, 100-nF, PVDD-rated ceramic capacitor (X7R recommended) is required between the CP1H to CP1L and CP2H to CP2L pins to act as the flying capacitors.

Note:

Since the charge pump is regulated to the PVDD pin, it should be ensured that the voltage difference between the PVDD pin and MOSFET power supply is limited to a threshold that allows for proper VGS of the external MOSFET during switching operation.