ZHCSLG2B September   2021  – August 2022 LM74722-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Dual Gate Control (GATE, PD)
        1. 8.3.1.1 Reverse Battery Protection (A, C, GATE)
        2. 8.3.1.2 Load Disconnect Switch Control (PD)
        3. 8.3.1.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)
      2. 8.3.2 Boost Regulator
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical 12-V Reverse Battery Protection Application
      1. 9.2.1 Design Requirements for 12-V Battery Protection
        1. 9.2.1.1 Automotive Reverse Battery Protection
          1. 9.2.1.1.1 Input Transient Protection: ISO 7637-2 Pulse 1
          2. 9.2.1.1.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06
          3. 9.2.1.1.3 Input Micro-Short Protection: LV124 E-10
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Design Considerations
        2. 9.2.2.2 Boost Converter Components (C2, C3, L1)
        3. 9.2.2.3 Input and Output Capacitance
        4. 9.2.2.4 Hold-Up Capacitance
        5. 9.2.2.5 Overvoltage Protection and Battery Monitor
        6. 9.2.2.6 MOSFET Selection: Blocking MOSFET Q1
        7. 9.2.2.7 MOSFET Selection: Load Disconnect MOSFET Q2
        8. 9.2.2.8 TVS Selection
      3. 9.2.3 Application Curves
    3. 9.3 What to Do and What Not to Do
  10. 10Power Supply Recommendations
    1. 10.1 Transient Protection
    2. 10.2 TVS Selection for 12-V Battery Systems
    3. 10.3 TVS Selection for 24-V Battery Systems
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 接收文档更新通知
    2. 12.2 支持资源
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Transient Protection

When the external MOSFETs turn OFF during the conditions such as overvoltage cutoff, reverse current blocking, and EN causing an interruption of the current flow, the input line inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to address the issue.

Typical methods for addressing transients include:

  • Minimizing lead length and inductance into and out of the device
  • Using large PCB GND plane
  • Use of a Schottky diode across the output and GND to absorb negative spikes
  • A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the transients

Equation 8 can estimate the approximate value of input capacitance.

Equation 7. GUID-AFF3CC15-F214-4278-A654-4119D453117E-low.gif

where

  • V(IN) is the nominal supply voltage
  • I(LOAD) is the load current
  • L(IN) equals the effective inductance seen looking into the source
  • C(IN) is the capacitance present at the input

Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from exceeding the Absolute Maximum Ratings of the device. These transients can occur during EMC testing, such as automotive ISO7637 pulses.

Figure 10-1 shows the circuit implementation with optional protection components (a ceramic capacitor, TVS, and Schottky diode).

GUID-20210831-SS0I-N6QM-QZLS-LXGZV5RCFDJD-low.gif
* Optional components needed for suppression of transients.
Figure 10-1 Circuit Implementation With Optional Protection Components for LM74722-Q1