ZHCSPF6B february   2022  – may 2023 LMQ66410 , LMQ66420 , LMQ66430

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Enable, Start-Up, and Shutdown
      2. 8.3.2  Adjustable Switching Frequency (with RT)
      3. 8.3.3  Power-Good Output Operation
      4. 8.3.4  Internal LDO, VCC, and VOUT/FB Input
      5. 8.3.5  Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      6. 8.3.6  Output Voltage Selection
      7. 8.3.7  Spread Spectrum
      8. 8.3.8  Soft Start and Recovery from Dropout
        1. 8.3.8.1 Recovery from Dropout
      9. 8.3.9  Current Limit and Short Circuit
      10. 8.3.10 Thermal Shutdown
      11. 8.3.11 Input Supply Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
        1. 8.4.3.1 CCM Mode
        2. 8.4.3.2 Auto Mode – Light Load Operation
          1. 8.4.3.2.1 Diode Emulation
          2. 8.4.3.2.2 Frequency Reduction
        3. 8.4.3.3 FPWM Mode – Light Load Operation
        4. 8.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 8.4.3.5 Dropout
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Synchronous Buck Regulator at 400 kHz
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1  Choosing the Switching Frequency
        2. 9.2.3.2  Setting the Output Voltage
          1. 9.2.3.2.1 VOUT / FB for Adjustable Output
        3. 9.2.3.3  Inductor Selection
        4. 9.2.3.4  Output Capacitor Selection
        5. 9.2.3.5  Input Capacitor Selection
        6. 9.2.3.6  CBOOT
        7. 9.2.3.7  VCC
        8. 9.2.3.8  CFF Selection
        9. 9.2.3.9  External UVLO
        10. 9.2.3.10 Maximum Ambient Temperature
      4. 9.2.4 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
        1. 9.5.1.1 Ground and Thermal Considerations
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 10.1.2 Device Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Maximum Ambient Temperature

As with any power conversion device, the LMQ664x0 dissipates internal power while operating. The effect of this power dissipation is to raise the internal temperature of the converter above ambient. The internal die temperature (TJ) is a function of the ambient temperature, the power loss, and the effective thermal resistance, RθJA, of the device, and PCB combination. The maximum junction temperature for the LMQ664x0 must be limited to 150°C. This establishes a limit on the maximum device power dissipation and, therefore, the load current. Equation 12 shows the relationships between the important parameters. It is easy to see that larger ambient temperatures (TA) and larger values of RθJA reduce the maximum available output current. The converter efficiency can be estimated by using the curves provided in this data sheet. If the desired operating conditions cannot be found in one of the curves, interpolation can be used to estimate the efficiency. Alternatively, the EVM can be adjusted to match the desired application requirements and the efficiency can be measured directly. The correct value of RθJA is more difficult to estimate. For more information, refer to the Semiconductor and IC Package Thermal Metrics Application Report.

Equation 12. IOUT|MAX=TJ-TARθJA×η1-η×1VOUT

where

  • η is the efficiency.

The effective RθJA is a critical parameter and depends on many factors such as the following:

  • Power dissipation
  • Air temperature/flow
  • PCB area
  • Copper heat-sink area
  • Number of thermal vias under the package
  • Adjacent component placement

The IC junction temperature can be estimated for a given operating condition using Equation 13.

Equation 13. TJTA+RθJA×IC Power Loss

where

  • TJ is the IC junction temperature (°C).
  • TA is the ambient temperature (°C).
  • RθJA is the thermal resistance (°C/W).
  • IC power loss is the power loss for the IC (W).

The IC power loss mentioned above is the overall power loss minus the loss that comes from the inductor DC resistance. The overall power loss can be approximated by using WEBENCH for a specific operating condition and temperature.

Figure 9-3 below is provided to estimate the thermal resistance of the IC for a particular board area.

GUID-20221118-SS0I-9PS0-QTSN-NC6RVCCBTGTB-low.svg
The device operating conditions are as follows: 12-VIN, 3.3-VOUT, 3-A load, 2.2-MHz, 23ºC ambient. 4 layer board, GND plane on Mid-Layer One, 2.8-mil thick copper on each layer, see LMQ66430-Q1 Buck Controller Evaluation Module User’s Guide for copper pattern and thermal vias.
Figure 9-3 RθJA vs Board Area

Use the following resources as guides to optimal thermal PCB design and estimating RθJA for a given application environment: