ZHCSMU1G October   2020  – May 2024 LMR43610-Q1 , LMR43620-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Enable, Start-Up, and Shutdown
      2. 7.3.2  External CLK SYNC (with MODE/SYNC)
        1. 7.3.2.1 Pulse-Dependent MODE/SYNC Pin Control
      3. 7.3.3  Adjustable Switching Frequency (with RT)
      4. 7.3.4  Power-Good Output Operation
      5. 7.3.5  Internal LDO, VCC, and VOUT/FB Input
      6. 7.3.6  Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      7. 7.3.7  Output Voltage Selection
      8. 7.3.8  Spread Spectrum
      9. 7.3.9  Soft Start and Recovery from Dropout
        1. 7.3.9.1 Recovery from Dropout
      10. 7.3.10 Current Limit and Short Circuit
      11. 7.3.11 Thermal Shutdown
      12. 7.3.12 Input Supply Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 Auto Mode – Light-Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Reduction
        3. 7.4.3.3 FPWM Mode – Light-Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Choosing the Switching Frequency
        2. 8.2.2.2  Setting the Output Voltage
          1. 8.2.2.2.1 FB for Adjustable Output
        3. 8.2.2.3  Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  CBOOT
        7. 8.2.2.7  VCC
        8. 8.2.2.8  CFF Selection
        9. 8.2.2.9  External UVLO
        10. 8.2.2.10 Maximum Ambient Temperature
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

CFF Selection

In some cases, a feedforward capacitor can be used across RFBT to improve the load transient response or improve the loop-phase margin. Optimizing Transient Response of Internally Compensated DC-DC Converters with Feedforward Capacitor Application Report is helpful when experimenting with a feedforward capacitor.

Due to the nature of the feedback detect circuitry, the value of CFF must be limited to make sure that the desired output voltage is established when configuring for adjustable output voltages. Equation 9 must be followed to make sure CFF remains below the maximum value.

Equation 9. CFF<COUT×VOUT1.2 M