ZHCSQV1C March   2020  – December 2022 TCAN1463-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  ESD Ratings - IEC Specifications
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Power Dissipation Ratings
    7. 7.7  Power Supply Characteristics
    8. 7.8  Electrical Characteristics
    9. 7.9  Timing Requirements
    10. 7.10 Switching Characteristics
    11. 7.11 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Signal Improvement
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Supply Pins
        1. 9.3.1.1 VSUP Pin
        2. 9.3.1.2 VCC Pin
        3. 9.3.1.3 VIO Pin
      2. 9.3.2 Digital Inputs and Outputs
        1. 9.3.2.1 TXD Pin
        2. 9.3.2.2 RXD Pin
        3. 9.3.2.3 nFAULT Pin
        4. 9.3.2.4 EN Pin
        5. 9.3.2.5 nSTB Pin
        6. 9.3.2.6 INH_MASK Pin
      3. 9.3.3 GND
      4. 9.3.4 INH Pin
      5. 9.3.5 WAKE Pin
      6. 9.3.6 CAN Bus Pins
      7. 9.3.7 Faults
        1. 9.3.7.1 Internal and External Fault Indicators
          1. 9.3.7.1.1 Power-Up (PWRON Flag)
          2. 9.3.7.1.2 Wake-Up Request (WAKERQ Flag)
          3. 9.3.7.1.3 Undervoltage Faults
            1. 9.3.7.1.3.1 Undervoltage on VSUP
            2. 9.3.7.1.3.2 Undervoltage on VCC
            3. 9.3.7.1.3.3 Undervoltage on VIO
          4. 9.3.7.1.4 CAN Bus Fault (CBF Flag)
          5. 9.3.7.1.5 TXD Clamped Low (TXDCLP Flag)
          6. 9.3.7.1.6 TXD Dominant State Timeout (TXDDTO Flag)
          7. 9.3.7.1.7 TXD Shorted to RXD Fault (TXDRXD Flag)
          8. 9.3.7.1.8 CAN Bus Dominant Fault (CANDOM Flag)
      8. 9.3.8 Local Faults
        1. 9.3.8.1 TXD Clamped Low (TXDCLP)
        2. 9.3.8.2 TXD Dominant Timeout (TXD DTO)
        3. 9.3.8.3 Thermal Shutdown (TSD)
        4. 9.3.8.4 Undervoltage Lockout (UVLO)
        5. 9.3.8.5 Unpowered Devices
        6. 9.3.8.6 Floating Terminals
        7. 9.3.8.7 CAN Bus Short-Circuit Current Limiting
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operating Mode Description
        1. 9.4.1.1 Normal Mode
        2. 9.4.1.2 Silent Mode
        3. 9.4.1.3 Standby Mode
        4. 9.4.1.4 Go-To-Sleep Mode
        5. 9.4.1.5 Sleep Mode
          1. 9.4.1.5.1 Remote Wake Request via Wake-Up Pattern (WUP)
          2. 9.4.1.5.2 Local Wake-Up (LWU) via WAKE Input Terminal
      2. 9.4.2 CAN Transceiver
        1. 9.4.2.1 CAN Transceiver Operation
          1. 9.4.2.1.1 CAN Transceiver Modes
            1. 9.4.2.1.1.1 CAN Off Mode
            2. 9.4.2.1.1.2 CAN Autonomous: Inactive and Active
            3. 9.4.2.1.1.3 CAN Active
          2. 9.4.2.1.2 Driver and Receiver Function Tables
          3. 9.4.2.1.3 CAN Bus States
  10. 10Application Information Disclaimer
    1. 10.1 Application Information
      1. 10.1.1 Typical Application
      2. 10.1.2 Design Requirements
        1. 10.1.2.1 Bus Loading, Length and Number of Nodes
      3. 10.1.3 Detailed Design Procedure
        1. 10.1.3.1 CAN Termination
      4. 10.1.4 Application Curves
      5. 10.1.5 Power Supply Recommendations
      6. 10.1.6 Layout
        1. 10.1.6.1 Layout Guidelines
        2. 10.1.6.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics

Over recommended operating conditions with TJ = –40°C to 150°C, unless otherwise noted. All typical values are taken at 25°C, VSUP = 12 V, VIO = 3.3 V, VCC = 5 V and RL = 60 Ω
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CAN Driver Characteristics
VO(D) Dominant output voltage
Bus biasing active
CANH TXD = 0 V, 50 ≤ RL ≤ 65 Ω, CL = open, RCM = open
See Figure 8-1  and Figure 8-4 
2.75 4.5 V
CANL 0.5 2.25 V
VO(R) Recessive output voltage
Bus biasing active
TXD = VIO, RL = open (no load), RCM = open
See Figure 8-1 and  Figure 8-4 
2 3 V
VSYM Driver symmetry
Bus biasing active
(VO(CANH) + VO(CANL) ) / VCC
nSTB= VIO, RL = 60 Ω, CSPLIT = 4.7 nF, CL = Open, RCM = Open, TXD = 250 kHz, 1 MHz, 2.5 MHz
See Figure 8-1 and Figure 8-4 
0.9 1.1 V/V
VSYM_DC DC Driver symmetry
Bus biasing active
VCC – VO(CANH) – VO(CANL)
nSTB= VIO, RL = 60 Ω, CL = open
See Figure 8-1 and Figure 8-4 
–400 400 mV
VOD(DOM) Differential output voltage
Bus biasing active
Dominant
CANH - CANL nSTB = VIO, TXD = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open
See Figure 8-1 and Figure 8-4 
1.5 3 V
CANH - CANL nSTB = VIO, TXD = 0 V, 45 Ω ≤ RL ≤ 70 Ω, CL = open
See Figure 8-1 and Figure 8-4 
1.4 3.3 V
CANH - CANL nSTB = VIO, TXD = 0 V, RL = 2240 Ω, CL = open
See Figure 8-1 and Figure 8-4 
1.5 5 V
VOD(REC) Differential output voltage
Bus biasing active
Recessive
CANH - CANL nSTB = VIO, TXD = VIO, RL = open Ω, CL = open
See Figure 8-1 and Figure 8-4 
–50 50 mV
VOD(STB) Differential output voltage
Bus biasing inactive
Recessive
CANH nSTB = 0 V, TXD = VIO, RL = open (no load), CL = open 
See Figure 8-1 and Figure 8-4 
 
-0.1 0.1 V
CANL nSTB = 0 V, TXD = VIO, RL = open (no load), CL = open
See Figure 8-1 and Figure 8-4 
-0.1 0.1 V
CANH - CANL nSTB = 0 V, TXD = VIO, RL = open (no load), CL = open
See Figure 8-1 and Figure 8-4 
-0.2 0.2 V
IOS(DOM) Short-circuit steady-state output current
Bus biasing active
Dominant
nSTB = VIO, TXD = 0 V
-15 V ≤ V(CANH) ≤ 40 V
See Figure 8-1  and Figure 8-8 
–100 mA
nSTB = VIO, TXD = 0 V
-15 V ≤ V(CANL) ≤ 40 V
See Figure 8-1  and Figure 8-8 
100 mA
IOS(REC) Short-circuit steady-state output current
Bus biasing active
Recessive
nSTB = VIO, VBUS = CANH = CANL
-27 V ≤ VBUS ≤ 42 V
See Figure 8-1  and Figure 8-8 
–3 3 mA
RID(dom) Differential input resistance in dominant phase See Figure 9-2 40 ohm
RID(active_rec) Differential input resistance in active recessive drive phase See Figure 9-2 60 ohm
CAN Receiver Characteristics
VIT(DOM) Receiver dominant state input voltage range
Bus biasing active
nSTB = VIO, -12 V ≤ VCM ≤ 12 V
See Figure 8-5 and Table 9-6 
 
0.9 8 V
VIT(REC) Receiver recessive state input voltage range
Bus biasing active
-3 0.5 V
VHYS Hysteresis voltage for input threshold
Bus biasing active
nSTB = VIO
See Figure 8-5 and Table 9-6 
 
135 mV
VDIFF(DOM) Receiver dominant state input voltage range
Bus biasing inactive
nSTB = 0 V, -12 V ≤ VCM ≤ 12 V
See Figure 8-5 and Table 9-6 
 
1.150 8 V
VDIFF(REC) Receiver recessive state input voltage range
Bus biasing inactive
-3 0.4 V
VCM Common mode range nSTB = VIO
See Figure 8-5 and Table 9-6 
 
–12 12 V
IOFF(LKG) Power-off (unpowered) bus input leakage current VSUP = 0 V, CANH = CANL = 5 V 2.5 µA
CI Input capacitance to ground (CANH or CANL) (1) TXD = VCC = VIO 40 pF
CID Differential input capacitance (1) TXD = VCC = VIO 20 pF
RID Differential input resistance TXD = VCC = VIO = 5 V, nSTB = 5 V
-12 V ≤ VCM ≤ 12 V
30 100 kΩ
RIN Input resistance (CANH or CANL) 15 50 kΩ
RIN(M) Input resistance matching:
[1 – RIN(CANH) / RIN(CANL)] × 100%
V(CANH) = V(CANL) = 5 V –3 3 %
RCBF Valid differential load impedance range for bus fault circuitry RCM = RL, CL = open 45 70 Ω
TXD Characteristics
VIH High-level input voltage 0.7 VIO
VIL Low-level input voltage 0.3 VIO
IIH High-level input leakage current TXD = VIO = 5.5 V –2.5 1 µA
IIL Low-level input leakage current TXD = 0 V, VIO = 5.5 V –115 –2.5 µA
ILKG(OFF) Unpowered leakage current TXD = 5.5 V, VSUP = VIO = 0 V –1 1 µA
RPU Pull-up resistance to VIO 40 60 80 kΩ
CI Input Capacitance VIN = 0.4 x sin(2 × π × 2 × 106 × t) + 2.5 V 5 pF
RXD Characteristics
VOH High-level output voltage IO = –2 mA
See Figure 8-5 
0.8 VIO
VOL Low-level output voltage IO = 2 mA
See Figure 8-5 
0.2 VIO
ILKG(OFF) Unpowered leakage current RXD = 5.5 V, VSUP = VIO = 0 V -1 1 µA
nSTB Characteristics
VIH High-level input voltage 0.7 VIO
VIL Low-level input voltage 0.3 VIO
IIH High-level input leakage current nSTB = VIO = 5.5 V 0.5 115 µA
IIL Low-level input leakage current nSTB = 0 V, VIO = 5.5 V –1 1 µA
ILKG(OFF) Unpowered leakage current nSTB = 5.5 V, VIO = 0 V –1 1 µA
RPD Pull-down resistance to GND 40 60 80 kΩ
nFAULT Characteristics
VOH High-level output voltage IO = -2 mA
0.8 VIO
VOL Low-level output voltage IO = 2 mA
0.2 VIO
ILKG(OFF) Unpowered leakage current nFAULT = 5.5 V, VIO = 0 V –1 1 µA
INH_MASK Characteristics
VIH High-level input voltage 0.7 VIO
VIL Low-level input voltage 0.3 VIO
IIH High-level input leakage current INH_MASK = VCC = VIO = 5.5 V 0.5 115 µA
IIL Low-level input leakage current INH_MASK = 0 V, VCC = VIO = 5.5 V -1 1 µA
ILKG(OFF) Unpowered leakage current INH_MASK = 5.5 V, VCC = VIO = 0 V -1 1 µA
RPD Pull-down resistance to GND (1) 40 60 80 kΩ
EN Characteristics
VIH High-level input voltage 0.7 VIO
VIL Low-level input voltage 0.3 VIO
IIH High-level input leakage current EN = VCC = VIO = 5.5 V 0.5 115 µA
IIL Low-level input leakage current EN = 0 V, VCC = VIO = 5.5 V -1 1 µA
ILKG(OFF) Unpowered leakage current EN = 5.5 V, VCC = VIO = 0 V -1 1 µA
RPD Pull-down resistance to GND 40 60 80 kΩ
WAKE Characteristics
VIH High-level input voltage Sleep mode VSUP - 2 V
VIL Low-level input voltage VSUP - 3.5 V
IIH High-level input leakage current WAKE = VSUP – 1 V -3 µA
IIL Low-level input leakage current WAKE = 1 V 3 µA
INH Characteristics
ΔVH High-level voltage drop from VSUP to  INH (VSUP - VINH) IINH = –6 mA 0.5 1 V
ILKG(INH) Sleep mode leakage current INH = 0 V –0.5 0.5 µA
RPD Pull-down resistance Sleep mode 2.5 4 5.6 MΩ
Specified by design and verified via bench characterization