ZHCSGV6F June   2009  – January 2017 TMS320C6742

PRODUCTION DATA.  

  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 功能方框图
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Device Characteristics
    2. 3.2 Device Compatibility
    3. 3.3 DSP Subsystem
      1. 3.3.1 C674x DSP CPU Description
      2. 3.3.2 DSP Memory Mapping
        1. 3.3.2.1 External Memories
        2. 3.3.2.2 DSP Internal Memories
        3. 3.3.2.3 C674x CPU
    4. 3.4 Memory Map Summary
      1. Table 3-4 C6742 Top Level Memory Map
    5. 3.5 Pin Assignments
      1. 3.5.1 Pin Map (Bottom View)
    6. 3.6 Pin Multiplexing Control
    7. 3.7 Terminal Functions
      1. 3.7.1  Device Reset, NMI and JTAG
      2. 3.7.2  High-Frequency Oscillator and PLL
      3. 3.7.3  Real-Time Clock and 32-kHz Oscillator
      4. 3.7.4  DEEPSLEEP Power Control
      5. 3.7.5  External Memory Interface A (EMIFA)
      6. 3.7.6  DDR2/mDDR Controller
      7. 3.7.7  Serial Peripheral Interface Modules (SPI)
      8. 3.7.8  Enhanced Capture/Auxiliary PWM Modules (eCAP0)
      9. 3.7.9  Enhanced Pulse Width Modulators (eHRPWM)
      10. 3.7.10 Boot
      11. 3.7.11 Universal Asynchronous Receiver/Transmitters (UART0)
      12. 3.7.12 Inter-Integrated Circuit Modules(I2C0)
      13. 3.7.13 Timers
      14. 3.7.14 Multichannel Audio Serial Ports (McASP)
      15. 3.7.15 Multichannel Buffered Serial Ports (McBSP)
      16. 3.7.16 Universal Host-Port Interface (UHPI)
      17. 3.7.17 General Purpose Input Output
      18. 3.7.18 Reserved and No Connect
      19. 3.7.19 Supply and Ground
    8. 3.8 Unused Pin Configurations
  4. 4Device Configuration
    1. 4.1 Boot Modes
    2. 4.2 SYSCFG Module
    3. 4.3 Pullup/Pulldown Resistors
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted)
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Notes on Recommended Power-On Hours (POH)
    5. 5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted)
  6. 6Peripheral Information and Electrical Specifications
    1. 6.1  Parameter Information
      1. 6.1.1 Parameter Information Device-Specific Information
        1. 6.1.1.1 Signal Transition Levels
    2. 6.2  Recommended Clock and Control Signal Transition Behavior
    3. 6.3  Power Supplies
      1. 6.3.1 Power-On Sequence
      2. 6.3.2 Power-Off Sequence
    4. 6.4  Reset
      1. 6.4.1 Power-On Reset (POR)
      2. 6.4.2 Warm Reset
      3. 6.4.3 Reset Electrical Data Timings
    5. 6.5  Crystal Oscillator or External Clock Input
    6. 6.6  Clock PLLs
      1. 6.6.1 PLL Device-Specific Information
      2. 6.6.2 Device Clock Generation
      3. 6.6.3 Dynamic Voltage and Frequency Scaling (DVFS)
    7. 6.7  Interrupts
      1. 6.7.1 DSP Interrupts
    8. 6.8  Power and Sleep Controller (PSC)
      1. 6.8.1 Power Domain and Module Topology
        1. 6.8.1.1 Power Domain States
        2. 6.8.1.2 Module States
    9. 6.9  Enhanced Direct Memory Access Controller (EDMA3)
      1. 6.9.1 EDMA3 Channel Synchronization Events
      2. 6.9.2 EDMA3 Peripheral Register Descriptions
    10. 6.10 External Memory Interface A (EMIFA)
      1. 6.10.1 EMIFA Asynchronous Memory Support
      2. 6.10.2 EMIFA Synchronous DRAM Memory Support
      3. 6.10.3 EMIFA SDRAM Loading Limitations
      4. 6.10.4 EMIFA Connection Examples
      5. 6.10.5 External Memory Interface Register Descriptions
      6. 6.10.6 EMIFA Electrical Data/Timing
        1. Table 6-19 Timing Requirements for EMIFA SDRAM Interface
        2. Table 6-20 Switching Characteristics for EMIFA SDRAM Interface
        3. Table 6-21 Timing Requirements for EMIFA Asynchronous Memory Interface
    11. 6.11 DDR2/mDDR Memory Controller
      1. 6.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing
      2. 6.11.2 DDR2/mDDR Memory Controller Register Description(s)
      3. 6.11.3 DDR2/mDDR Interface
        1. 6.11.3.1  DDR2/mDDR Interface Schematic
        2. 6.11.3.2  Compatible JEDEC DDR2/mDDR Devices
        3. 6.11.3.3  PCB Stackup
        4. 6.11.3.4  Placement
        5. 6.11.3.5  DDR2/mDDR Keep Out Region
        6. 6.11.3.6  Bulk Bypass Capacitors
        7. 6.11.3.7  High-Speed Bypass Capacitors
        8. 6.11.3.8  Net Classes
        9. 6.11.3.9  DDR2/mDDR Signal Termination
        10. 6.11.3.10 VREF Routing
        11. 6.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing
        12. 6.11.3.12 DDR2/mDDR Boundary Scan Limitations
    12. 6.12 Memory Protection Units
    13. 6.13 Multichannel Audio Serial Port (McASP)
      1. 6.13.1 McASP Peripheral Registers Description(s)
      2. 6.13.2 McASP Electrical Data/Timing
        1. 6.13.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
          1. Table 6-42 Timing Requirements for McASP0 (1.2V, 1.1V)
          2. Table 6-43 Timing Requirements for McASP0 (1.0V)
          3. Table 6-44 Switching Characteristics for McASP0 (1.2V, 1.1V)
          4. Table 6-45 Switching Characteristics for McASP0 (1.0V)
    14. 6.14 Multichannel Buffered Serial Port (McBSP)
      1. 6.14.1 McBSP Peripheral Register Description(s)
      2. 6.14.2 McBSP Electrical Data/Timing
        1. 6.14.2.1 Multichannel Buffered Serial Port (McBSP) Timing
          1. Table 6-47 Timing Requirements for McBSP1 [1.2V, 1.1V] (see )
          2. Table 6-48 Timing Requirements for McBSP1 [1.0V] (see )
          3. Table 6-49 Switching Characteristics for McBSP1 [1.2V, 1.1V] (see )
          4. Table 6-50 Switching Characteristics for McBSP1 [1.0V] (see )
          5. Table 6-51 Timing Requirements for McBSP1 FSR When GSYNC = 1 (see )
    15. 6.15 Serial Peripheral Interface Ports (SPI1)
      1. 6.15.1 SPI Peripheral Registers Description(s)
      2. 6.15.2 SPI Electrical Data/Timing
        1. 6.15.2.1 Serial Peripheral Interface (SPI) Timing
          1. Table 6-53 General Timing Requirements for SPI1 Master Modes
          2. Table 6-54 General Timing Requirements for SPI1 Slave Modes
          3. Table 6-55 Additional SPI1 Master Timings, 4-Pin Enable Option
          4. Table 6-56 Additional SPI1 Master Timings, 4-Pin Chip Select Option
    16. 6.16 Inter-Integrated Circuit Serial Ports (I2C)
      1. 6.16.1 I2C Device-Specific Information
      2. 6.16.2 I2C Peripheral Registers Description(s)
      3. 6.16.3 I2C Electrical Data/Timing
        1. 6.16.3.1 Inter-Integrated Circuit (I2C) Timing
          1. Table 6-62 Timing Requirements for I2C Input
          2. Table 6-63 Switching Characteristics for I2C
    17. 6.17 Universal Asynchronous Receiver/Transmitter (UART)
      1. 6.17.1 UART Peripheral Registers Description(s)
      2. 6.17.2 UART Electrical Data/Timing
        1. Table 6-65 Timing Requirements for UART Receive (see )
        2. Table 6-66 Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (see )
    18. 6.18 Host-Port Interface (UHPI)
      1. 6.18.1 HPI Device-Specific Information
      2. 6.18.2 HPI Peripheral Register Description(s)
      3. 6.18.3 HPI Electrical Data/Timing
        1. Table 6-68 Timing Requirements for Host-Port Interface [1.2V, 1.1V]
        2. Table 6-69 Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.2V, 1.1V]
        3. Table 6-70 Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.0V]
    19. 6.19 Enhanced Capture (eCAP) Peripheral
      1. Table 6-72 Timing Requirements for Enhanced Capture (eCAP)
      2. Table 6-73 Switching Characteristics Over Recommended Operating Conditions for eCAP
    20. 6.20 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
      1. 6.20.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
        1. Table 6-75 Timing Requirements for eHRPWM
        2. Table 6-76 Switching Characteristics Over Recommended Operating Conditions for eHRPWM
      2. 6.20.2 Trip-Zone Input Timing
    21. 6.21 Timers
      1. 6.21.1 Timer Electrical Data/Timing
        1. Table 6-79 Timing Requirements for Timer Input (see )
        2. Table 6-80 Switching Characteristics Over Recommended Operating Conditions for Timer Output
    22. 6.22 Real Time Clock (RTC)
      1. 6.22.1 Clock Source
      2. 6.22.2 Real-Time Clock Register Descriptions
    23. 6.23 General-Purpose Input/Output (GPIO)
      1. 6.23.1 GPIO Register Description(s)
      2. 6.23.2 GPIO Peripheral Input/Output Electrical Data/Timing
        1. Table 6-83 Timing Requirements for GPIO Inputs (see )
        2. Table 6-84 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see )
      3. 6.23.3 GPIO Peripheral External Interrupts Electrical Data/Timing
        1. Table 6-85 Timing Requirements for External Interrupts (see )
    24. 6.24 Emulation Logic
      1. 6.24.1 JTAG Port Description
      2. 6.24.2 Scan Chain Configuration Parameters
      3. 6.24.3 Initial Scan Chain Configuration
      4. 6.24.4 IEEE 1149.1 JTAG
        1. 6.24.4.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0)
        2. 6.24.4.2 JTAG Test-Port Electrical Data/Timing
          1. Table 6-91 Timing Requirements for JTAG Test Port (see )
          2. Table 6-92 Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see )
      5. 6.24.5 JTAG 1149.1 Boundary Scan Considerations
  7. 7Device and Documentation Support
    1. 7.1 Device Nomenclature
    2. 7.2 Tools and Software
    3. 7.3 Documentation Support
    4. 7.4 社区资源
    5. 7.5 商标
    6. 7.6 静电放电警告
    7. 7.7 出口管制提示
    8. 7.8 术语表
  8. 8Mechanical Packaging and Orderable Information
    1. 8.1 Thermal Data for ZCE Package
    2. 8.2 Thermal Data for ZWT Package
    3. 8.3 Packaging Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • ZWT|361
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pullup/Pulldown Resistors

Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors.

An external pullup/pulldown resistor needs to be used in the following situations:

  • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
  • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail.

For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.

Tips for choosing an external pullup/pulldown resistor:

  • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors.
  • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels.
  • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net.
  • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin).
  • Remember to include tolerances when selecting the resistor value.
  • For pullup resistors, also remember to include tolerances on the IO supply rail.
  • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
  • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
  • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 5.3, Recommended Operating Conditions.
  • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table.