ZHCS979F June   2012  – October 2020 TPS53318 , TPS53319

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
    7. 7.7 TPS53319 Typical Characteristics
    8. 7.8 TPS53318 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  5-V LDO and VREG Start-Up
      2. 8.3.2  Adaptive On-Time D-CAP Control and Frequency Selection
      3. 8.3.3  Ramp Signal
      4. 8.3.4  Adaptive Zero Crossing
      5. 8.3.5  Output Discharge Control
      6. 8.3.6  Power-Good
      7. 8.3.7  Current Sense, Overcurrent, and Short Circuit Protection
      8. 8.3.8  Overvoltage and Undervoltage Protection
      9. 8.3.9  Redundant Overvoltage Protection (OVP)
      10. 8.3.10 UVLO Protection
      11. 8.3.11 Thermal Shutdown
      12. 8.3.12 Small Signal Model
      13. 8.3.13 External Component Selection Using All Ceramic Output Capacitors
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable, Soft Start, and Mode Selection
      2. 8.4.2 Auto-Skip Eco-mode Light Load Operation
      3. 8.4.3 Forced Continuous Conduction Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Application Using Bulk Output Capacitors, Redundant Overvoltage Protection Function (OVP) Disabled
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Step One: Select Operation Mode and Soft-Start Time
          2. 9.2.1.2.2 Step Two: Select Switching Frequency
          3. 9.2.1.2.3 Step Three: Choose the Inductor
          4. 9.2.1.2.4 Step Four: Choose the Output Capacitor or Capacitors
          5. 9.2.1.2.5 Step Five: Determine the Value of R1 and R2
          6. 9.2.1.2.6 Step Six: Choose the Overcurrent Setting Resistor
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Application Using Ceramic Output Capacitors, Redundant Overvoltage Protection Function (OVP) Enabled
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 External Component Selection Using All Ceramic Output Capacitors
          2. 9.2.2.2.2 Redundant Overvoltage Protection
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Step Three: Choose the Inductor

The inductance value should be determined to give the ripple current of approximately 1/4 to 1/2 of maximum output current. Larger ripple current increases output ripple voltage and improves signal-to-noise ratio and helps ensure stable operation, but increases inductor core loss. Using 1/3 ripple current to maximum output current ratio, the inductance can be determined by Equation 14.

Equation 14. GUID-601645C7-91BC-402C-9B03-C2B436B2248F-low.gif

The inductor requires a low DCR to achieve good efficiency. It also requires enough room above peak inductor current before saturation. The peak inductor current can be estimated in Equation 15.

Equation 15. GUID-36AF2178-A641-449D-918F-24CB6F3C7E02-low.gif