ZHCSQ75C June   2022  – March 2023 UCC28C50-Q1 , UCC28C51-Q1 , UCC28C52-Q1 , UCC28C53-Q1 , UCC28C54-Q1 , UCC28C55-Q1 , UCC28C56H-Q1 , UCC28C56L-Q1 , UCC28C57H-Q1 , UCC28C57L-Q1 , UCC28C58-Q1 , UCC28C59-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Detailed Pin Description
        1. 8.3.1.1 COMP
        2. 8.3.1.2 FB
        3. 8.3.1.3 CS
        4. 8.3.1.4 RT/CT
        5. 8.3.1.5 GND
        6. 8.3.1.6 OUT
        7. 8.3.1.7 VDD
        8. 8.3.1.8 VREF
      2. 8.3.2  Undervoltage Lockout
      3. 8.3.3  ±1% Internal Reference Voltage
      4. 8.3.4  Current Sense and Overcurrent Limit
      5. 8.3.5  Reduced-Discharge Current Variation
      6. 8.3.6  Oscillator Synchronization
      7. 8.3.7  Soft Start
      8. 8.3.8  Enable and Disable
      9. 8.3.9  Slope Compensation
      10. 8.3.10 Voltage Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 UVLO Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Primary-to-Secondary Turns Ratio of the Flyback Transformer (NPS)
        2. 9.2.2.2  Primary Magnetizing Inductance of the Flyback Transformer (LM)
        3. 9.2.2.3  Number of Turns of the Flyback Transformer Windings
        4. 9.2.2.4  Current Sense Resistors (R24, R25) and Current Limiting
        5. 9.2.2.5  Primary Clamp Circuit (D7, D1, D3, R2, R28) to Limit Voltage Stress
        6. 9.2.2.6  Primary-Side Current Stress and Input Capacitor Selection
        7. 9.2.2.7  Secondary-Side Current Stress and Output Capacitor Selection
        8. 9.2.2.8  VDD Capacitors (C12, C18)
        9. 9.2.2.9  Gate Drive Network (R14, R16, Q6)
        10. 9.2.2.10 VREF Capacitor (C18)
        11. 9.2.2.11 RT/CT Components (R12, C15)
        12. 9.2.2.12 HV Start-Up Circuitry for VDD (Q1, Q2, D2, D4, D6, D8, R5)
        13. 9.2.2.13 Desensitization to CS-pin Noise by RC Filtering, Leading-Edge Blanking, and Slope Compensation
        14. 9.2.2.14 Voltage Feedback Compensation
          1. 9.2.2.14.1 Power Stage Gain, Poles, and Zeroes
          2. 9.2.2.14.2 Compensation Components
          3. 9.2.2.14.3 Bode Plots and Stability Margins
          4. 9.2.2.14.4 Stability Measurements
      3. 9.2.3 Application Curves
    3. 9.3 PCB Layout Recommendations
      1. 9.3.1 PCB Layout Routing Examples
    4. 9.4 Power Supply Recommendations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

PCB Layout Recommendations

In general, try to keep all high current loop areas as small as possible. Keep all traces with high current and high frequency away from other traces in the design. If necessary, high frequency/high current traces should be perpendicular to signal traces, not parallel to them. Shielding signal traces with ground planes can help reduce noise pick up. Always consider appropriate clearances between the high-voltage connections and any low voltage nets.

In order to increase the reliability and robustness of the design TI recommends the following PCB layout guidelines.