ZHCSQ75C June   2022  – March 2023 UCC28C50-Q1 , UCC28C51-Q1 , UCC28C52-Q1 , UCC28C53-Q1 , UCC28C54-Q1 , UCC28C55-Q1 , UCC28C56H-Q1 , UCC28C56L-Q1 , UCC28C57H-Q1 , UCC28C57L-Q1 , UCC28C58-Q1 , UCC28C59-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Detailed Pin Description
        1. 8.3.1.1 COMP
        2. 8.3.1.2 FB
        3. 8.3.1.3 CS
        4. 8.3.1.4 RT/CT
        5. 8.3.1.5 GND
        6. 8.3.1.6 OUT
        7. 8.3.1.7 VDD
        8. 8.3.1.8 VREF
      2. 8.3.2  Undervoltage Lockout
      3. 8.3.3  ±1% Internal Reference Voltage
      4. 8.3.4  Current Sense and Overcurrent Limit
      5. 8.3.5  Reduced-Discharge Current Variation
      6. 8.3.6  Oscillator Synchronization
      7. 8.3.7  Soft Start
      8. 8.3.8  Enable and Disable
      9. 8.3.9  Slope Compensation
      10. 8.3.10 Voltage Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 UVLO Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Primary-to-Secondary Turns Ratio of the Flyback Transformer (NPS)
        2. 9.2.2.2  Primary Magnetizing Inductance of the Flyback Transformer (LM)
        3. 9.2.2.3  Number of Turns of the Flyback Transformer Windings
        4. 9.2.2.4  Current Sense Resistors (R24, R25) and Current Limiting
        5. 9.2.2.5  Primary Clamp Circuit (D7, D1, D3, R2, R28) to Limit Voltage Stress
        6. 9.2.2.6  Primary-Side Current Stress and Input Capacitor Selection
        7. 9.2.2.7  Secondary-Side Current Stress and Output Capacitor Selection
        8. 9.2.2.8  VDD Capacitors (C12, C18)
        9. 9.2.2.9  Gate Drive Network (R14, R16, Q6)
        10. 9.2.2.10 VREF Capacitor (C18)
        11. 9.2.2.11 RT/CT Components (R12, C15)
        12. 9.2.2.12 HV Start-Up Circuitry for VDD (Q1, Q2, D2, D4, D6, D8, R5)
        13. 9.2.2.13 Desensitization to CS-pin Noise by RC Filtering, Leading-Edge Blanking, and Slope Compensation
        14. 9.2.2.14 Voltage Feedback Compensation
          1. 9.2.2.14.1 Power Stage Gain, Poles, and Zeroes
          2. 9.2.2.14.2 Compensation Components
          3. 9.2.2.14.3 Bode Plots and Stability Margins
          4. 9.2.2.14.4 Stability Measurements
      3. 9.2.3 Application Curves
    3. 9.3 PCB Layout Recommendations
      1. 9.3.1 PCB Layout Routing Examples
    4. 9.4 Power Supply Recommendations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Gate Drive Network (R14, R16, Q6)

When the primary MOSFET turns on in DCM operation, its current starts from 0A and ramps up to a peak value each PWM cycle. Therefore, to reduce gate drive losses and increase overall efficiency, it is desirable to turn the MOSFET on relatively slowly when its current (and losses) are low. On the other hand, when the current ramps up to its peak the MOSFET must be turned off quickly to limit its losses, which also helps increase efficiency. R14 is the gate driver resistor controlling the turn-on time of the MOSFET (Q5). The optional PNP pull-down transistor (Q6) is used to turn the MOSFET off as quickly as possible, when the MOSFET is far away from the controller gate driver pin.

The selection of R14 resistor value must be done in conjunction with EMI compliance testing and efficiency testing. Using a larger resistor value for R14 slows down the turn-on of the MOSFET. A slower switching speed reduces EMI but also increases the switching loss. A tradeoff between switching loss and EMI performance must be carefully performed. For this design, efficiency was measured for a range of values for R14. Efficiency peaked with a value of 39‑Ω for R14.