SBAA565 November   2022 ADC081C021 , ADC081C027 , ADC101C021 , ADC101C027 , ADC121C021 , ADC121C021-Q1 , ADC121C027 , ADC128D818 , ADS1000 , ADS1000-Q1 , ADS1013 , ADS1014 , ADS1015 , ADS1015-Q1 , ADS1100 , ADS1110 , ADS1112 , ADS1113 , ADS1114 , ADS1115 , ADS1115-Q1 , ADS7823 , ADS7827 , ADS7828 , ADS7828-Q1 , ADS7830 , ADS7924 , AFE539A4 , DAC081C081 , DAC081C085 , DAC101C081 , DAC101C081Q , DAC101C085 , DAC121C081 , DAC121C085 , DAC43204 , DAC43401 , DAC43401-Q1 , DAC43608 , DAC43701 , DAC43701-Q1 , DAC53002 , DAC53004 , DAC53202 , DAC53204 , DAC53204W , DAC53401 , DAC53401-Q1 , DAC53608 , DAC53701 , DAC53701-Q1 , DAC5571 , DAC5573 , DAC5574 , DAC5578 , DAC60501 , DAC60502 , DAC63002 , DAC63004 , DAC63202 , DAC63204 , DAC6571 , DAC6573 , DAC6574 , DAC6578 , DAC70501 , DAC70502 , DAC7571 , DAC7573 , DAC7574 , DAC7578 , DAC7678 , DAC80501 , DAC80502 , DAC8571 , DAC8574

 

  1.   Abstract
  2.   Trademarks
  3. 1I2C Overview
    1. 1.1 History
    2. 1.2 I2C Speed Modes
  4. 2I2C Physical Layer
    1. 2.1 Two-Wire Communication
    2. 2.2 Open-Drain Connection
    3. 2.3 Non-Destructive Bus Contention
  5. 3I2C Protocol
    1. 3.1 I2C START and STOP
    2. 3.2 Logical Ones and Zeros
    3. 3.3 I2C Communication Frames
  6. 4I2C Examples
    1. 4.1 DAC80501 Example
      1. 4.1.1 DAC80501 DAC Data Register
      2. 4.1.2 DAC80501 I2C Example Write
    2. 4.2 ADS1115 Example
      1. 4.2.1 ADS1115 Configuration Register
      2. 4.2.2 ADS1115 I2C Example Read
      3. 4.2.3 ADS1115 Conversion Result
  7. 5Reserved Addresses
    1. 5.1 General Call
    2. 5.2 START Byte
    3. 5.3 C-Bus Address, Different Bus Format, Future Purposes
    4. 5.4 HS-Mode Controller Code
    5. 5.5 Device ID
    6. 5.6 10-Bit Target Addressing
      1. 5.6.1 10-Bit Target Addressing Write
      2. 5.6.2 10-Bit Target Addressing Read
  8. 6Advanced Topics
    1. 6.1 Clock Synchronization and Arbitration
    2. 6.2 Clock Stretching
    3. 6.3 Electrical Specifications
    4. 6.4 Voltage Level Translation
      1. 6.4.1 Example 1
      2. 6.4.2 Example 2
      3. 6.4.3 Example 3
      4. 6.4.4 Example 4
    5. 6.5 Pullup Resistor Sizing
      1. 6.5.1 Minimum Pullup Resistance Sizing
      2. 6.5.2 Maximum Pullup Resistance Sizing
  9. 7Protocols Similar to I2C
  10. 8Summary

Example 3

In Figure 6-10, the controller and pullups are set to 5 V, but the target device is set to 3.3 V.

The I2C bus lines are able to be pulled up to 5 V, exceeding the target device supply. However, the target device has inputs tolerant to higher voltages. This higher tolerance is a feature in some I2C devices. This feature allows for direct connections between the I2C bus with pullups to the higher voltage supply. Check with the device data sheets for this possible feature.

Figure 6-10 I2C Pullup Resistor Over-Driven on Higher-Voltage Tolerant Lines

As an example, the ADS1115 is just one device that has SDA and SCL lines that are tolerant to voltages higher than the supply. Looking at the Absolute Maximum Table from the data sheet, the maximum digital input voltage is 5.5 V, regardless of the supply voltage. With this type of I2C line, the target device can tolerate pullup voltages higher than the supply. This allows for I2C communication between the devices even with different supply voltages.