SLOA101B August   2002  – May 2016 SN55HVD233-SEP , SN65HVDA1040A-Q1 , SN65HVDA1050A-Q1 , SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1

 

  1.   Introduction to the Controller Area Network (CAN)
    1.     Trademarks
    2. 1 Introduction
    3. 2 The CAN Standard
    4. 3 Standard CAN or Extended CAN
      1. 3.1 The Bit Fields of Standard CAN and Extended CAN
        1. 3.1.1 Standard CAN
        2. 3.1.2 Extended CAN
    5. 4 A CAN Message
      1. 4.1 Arbitration
      2. 4.2 Message Types
        1. 4.2.1 The Data Frame
        2. 4.2.2 The Remote Frame
        3. 4.2.3 The Error Frame
        4. 4.2.4 The Overload Frame
      3. 4.3 A Valid Frame
      4. 4.4 Error Checking and Fault Confinement
    6. 5 The CAN Bus
      1. 5.1 CAN Transceiver Features
        1. 5.1.1  3.3-V Supply Voltage
        2. 5.1.2  ESD Protection
        3. 5.1.3  Common-Mode Voltage Operating Range
        4. 5.1.4  Common-Mode Noise Rejection
        5. 5.1.5  Controlled Driver Output Transition Times
        6. 5.1.6  Low-Current Bus Monitor, Standby and Sleep Modes
        7. 5.1.7  Bus Pin Short-Circuit Protection
        8. 5.1.8  Thermal Shutdown Protection
        9. 5.1.9  Bus Input Impedance
        10. 5.1.10 Glitch-Free Power Up and Power Down
        11. 5.1.11 Unpowered Node Protection
        12. 5.1.12 Reference Voltage
        13. 5.1.13 V-Split
        14. 5.1.14 Loopback
        15. 5.1.15 Autobaud Loopback
      2. 5.2 CAN Transceiver Selection Guide
    7. 6 Conclusion
    8. 7 Additional Reading
  2.   Revision History

Unpowered Node Protection

Many CAN transceivers on the market today have a low output impedance when unpowered. This low impedance causes the device to sink any signal present on the bus and shuts down all data transmission. TI CAN transceivers have a high output impedance in powered and unpowered conditions and maintain the integrity of the bus any time power or ground is removed from the circuit.