ZHCAB45 June 2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R
遗憾的是,在大功率系统中存在高压摆率的不利影响。随着更多电流流经 FET 和 VDS 电压以更快的速度进行转换,MOSFET 的固有电容耦合以及寄生 LC 谐振的影响会增加。
如图 3-1 所示,栅极信号上升沿的高频分量(更重要的是,穿过米勒区域的上升 VDS 信号)会导致电流流到另一个 FET 的本征电容器上。该信号通过固有的栅极至漏极或栅极至源极电容器耦合,因为电容器在较高频率下具有较低的阻抗。如果这些耦合信号足够高,它们可能会超过电机驱动器的绝对最大额定值,或者打开一相内的低侧和高侧 FET,从而在电流绕过电机并从 VDRAIN 到 GND 流过直接路径时导致发生击穿。
由于 CGD 耦合,MOSFET 在导通之前具有最大压摆率限制。这意味着如果压摆率太高,即使栅极直接短接至源极,MOSFET 也会导通。在考虑栅极驱动器下拉强度和栅极路径上的寄生电感时,这会在导致意外导通之前降低可能的最大压摆率。
简单地说,栅极电流越大,耦合越多,而栅极电流越小,则耦合越少。
重申一下:
既然了解了栅极电流过多产生的影响,就必须开发调整栅极电流的方法,并且必须推导出给定系统的栅极电流计算法。