ZHCABS8 September 2022 AM2631 , AM2631-Q1 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , UCC14240-Q1 , UCC5870-Q1 , UCC5871-Q1 , UCC5880-Q1
牵引逆变器的架构因车辆类型而异。插电式混合动力汽车 (PHEV) 和纯电动汽车 (BEV) 具有三相电压源逆变器拓扑,功率级别在 100kW 至 500kW 范围内。电池包可以直接连接到逆变器直流输入,也可以使用直流/直流升压转换器升高电池电压并为逆变器提供受控直流电压。
两级逆变器是电动汽车和业界常用的电源转换器,其功率范围为数十千瓦到数百千瓦。通常,开关频率范围为 5kHz 至 30kHz,目前,三级逆变器越来越受欢迎,因为该逆变器具有更高的功率容量(超过 300kW)、更高的效率和更低的谐波失真,并允许使用更小的电磁干扰 (EMI) 滤波器。在许多拓扑中,中性点钳位和 T 型中性点钳位 (TNPC) 是极具竞争力的设计。图 2-1 所示为三级 TNPC 逆变器的示例。
第二个趋势是双电机架构。早在 2012 年,特斯拉就推出了 Model S,这是一款后轮驱动标准型豪华轿车,续航里程高达 426km,配备 85kWh 电池包。2014 年,特斯拉发布了 Model S 四驱版本,在前后轴上均配有电机。自那时起,各 OEM(例如 Chevy Volt PHEV、Toyota Prius HEV 和 Cadillac CT6 PHEV)纷纷实施双逆变器。
改进系统集成的第三个趋势是实现电子轴,将电力电子系统、电机和变速器组合在紧凑的系统外壳中。电子轴可提高电机性能,因为此设计可实现更高的扭矩和最高速度,例如 20k RPM。更好的冷却和线圈绕组结构可提高功率密度和电机效率。
牵引逆变器功能的其他趋势包括: