SN74LVTH646
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Support Unregulated Battery Operation Down to 2.7 V
- Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C - Ioff and Power-Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
These bus transceivers and registers are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.
The ’LVTH646 devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the ’LVTH646.
Output-enable (OE\) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either register or in both.
The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus receives data when OE\ is low. In the isolation mode (OE\ high), A data can be stored in one register and/or B data can be stored in the other register.
When an output function is disabled, the input function still is enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
您可能感兴趣的相似米6体育平台手机版_好二三四
功能与比较器件相同,且具有相同引脚
功能与比较器件相似
技术文档
设计和开发
如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。
14-24-LOGIC-EVM — 采用 14 引脚至 24 引脚 D、DB、DGV、DW、DYY、NS 和 PW 封装的逻辑米6体育平台手机版_好二三四通用评估模块
14-24-LOGIC-EVM 评估模块 (EVM) 旨在支持采用 14 引脚至 24 引脚 D、DW、DB、NS、PW、DYY 或 DGV 封装的任何逻辑器件。
封装 | 引脚 | CAD 符号、封装和 3D 模型 |
---|---|---|
SOIC (DW) | 24 | Ultra Librarian |
TSSOP (PW) | 24 | Ultra Librarian |
订购和质量
- RoHS
- REACH
- 器件标识
- 引脚镀层/焊球材料
- MSL 等级/回流焊峰值温度
- MTBF/时基故障估算
- 材料成分
- 鉴定摘要
- 持续可靠性监测
- 制造厂地点
- 封装厂地点