LF356

ACTIVE

Single, 36-V, 5-MHz, high slew rate (12-V/µs), In to V+, JFET-input operational amplifier

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TL071H ACTIVE Single, 40-V, 5-MHz, 4-mV offset voltage, 20-V/µs, In to V+ op amp with -40°C to 125°C operation Wider temperature range (-40°C to 125°C), lower quiescent current (0.0937 mA), wider voltage range (4.5 V to 40 V), and improved offset voltage drift
TL081H ACTIVE Single, 40-V, 5.25-MHz, 4-mV offset voltage, 20-V/µs, In to V+ op amp with -40°C to 125°C operation Wider supply range (4.5 V to 40 V), higher GBW (5.25 MHz), faster slew rate (20 V/us), lower offset voltage (4 mV), lower power (0.9375 mA)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail In to V+ GBW (typ) (MHz) 5 Slew rate (typ) (V/µs) 12 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 5 Vn at 1 kHz (typ) (nV√Hz) 12 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 3 Input bias current (max) (pA) 8000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.025 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail In to V+ GBW (typ) (MHz) 5 Slew rate (typ) (V/µs) 12 Vos (offset voltage at 25°C) (max) (mV) 10 Iq per channel (typ) (mA) 5 Vn at 1 kHz (typ) (nV√Hz) 12 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 3 Input bias current (max) (pA) 8000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.025 Architecture FET Input common mode headroom (to negative supply) (typ) (V) 3 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6
  • Advantages
    • Replace Expensive Hybrid and Module FET
      Op Amps
    • Rugged JFETs Allow Blow-Out Free Handling
      Compared With MOSFET Input Devices
    • Excellent for Low Noise Applications Using
      Either High or Low Source Impedance–Very
      Low 1/f Corner
    • Offset Adjust Does Not Degrade Drift or
      Common-Mode Rejection as in Most
      Monolithic Amplifiers
    • New Output Stage Allows Use of Large
      Capacitive Loads (5,000 pF) Without Stability
      Problems
    • Internal Compensation and Large Differential
      Input Voltage Capability
  • Common Features
    • Low Input Bias Current: 30 pA
    • Low Input Offset Current: 3 pA
    • High Input Impedance: 1012 Ω
    • Low Input Noise Current: 0.01 pA/√Hz
    • High Common-Mode Rejection Ratio: 100 dB
    • Large DC Voltage Gain: 106 dB
  • Uncommon Features
    • Extremely Fast Settling Time to 0.01%:
      • 4 µs for the LFx55 devices
      • 1.5 µs for the LFx56
      • 1.5 µs for the LFx57 (AV = 5)
    • Fast Slew Rate:
      • 5 V/µs for the LFx55
      • 12 V/µs for the LFx56
      • 50 V/µs for the LFx57 (AV = 5)
    • Wide Gain Bandwidth:
      • 2.5 MHz for the LFx55 devices
      • 5 MHz for the LFx56
      • 20 MHz for the LFx57 (AV = 5)
    • Low Input Noise Voltage:
      • 20 nV/√Hz for the LFx55
      • 12 nV/√Hz for the LFx56
      • 12 nV/√Hz for the LFx57 (AV = 5)
  • Advantages
    • Replace Expensive Hybrid and Module FET
      Op Amps
    • Rugged JFETs Allow Blow-Out Free Handling
      Compared With MOSFET Input Devices
    • Excellent for Low Noise Applications Using
      Either High or Low Source Impedance–Very
      Low 1/f Corner
    • Offset Adjust Does Not Degrade Drift or
      Common-Mode Rejection as in Most
      Monolithic Amplifiers
    • New Output Stage Allows Use of Large
      Capacitive Loads (5,000 pF) Without Stability
      Problems
    • Internal Compensation and Large Differential
      Input Voltage Capability
  • Common Features
    • Low Input Bias Current: 30 pA
    • Low Input Offset Current: 3 pA
    • High Input Impedance: 1012 Ω
    • Low Input Noise Current: 0.01 pA/√Hz
    • High Common-Mode Rejection Ratio: 100 dB
    • Large DC Voltage Gain: 106 dB
  • Uncommon Features
    • Extremely Fast Settling Time to 0.01%:
      • 4 µs for the LFx55 devices
      • 1.5 µs for the LFx56
      • 1.5 µs for the LFx57 (AV = 5)
    • Fast Slew Rate:
      • 5 V/µs for the LFx55
      • 12 V/µs for the LFx56
      • 50 V/µs for the LFx57 (AV = 5)
    • Wide Gain Bandwidth:
      • 2.5 MHz for the LFx55 devices
      • 5 MHz for the LFx56
      • 20 MHz for the LFx57 (AV = 5)
    • Low Input Noise Voltage:
      • 20 nV/√Hz for the LFx55
      • 12 nV/√Hz for the LFx56
      • 12 nV/√Hz for the LFx57 (AV = 5)

The LFx5x devices are the first monolithic JFET input operational amplifiers to incorporate well-matched, high-voltage JFETs on the same chip with standard bipolar transistors (BI-FET™ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust, which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

The LFx5x devices are the first monolithic JFET input operational amplifiers to incorporate well-matched, high-voltage JFETs on the same chip with standard bipolar transistors (BI-FET™ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust, which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet LFx5x JFET Input Operational Amplifiers datasheet (Rev. D) PDF | HTML 30 Nov 2015
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note AN-272 Op Amp Booster Designs (Rev. B) 23 Apr 2013
Application note AN-263 Sine Wave Generation Techniques (Rev. C) 22 Apr 2013
Application note Effect of Heavy Loads on Accuracy and Linearity of Op Amp Circuits (Rev. B) 22 Apr 2013
Application note Data Acq Using ADC0816 & ADC0817 8-Bit ADC w/On-Chip 16 Chan Multiplexr 10 May 2004
Application note AN-293 Control Applications of CMOS DACs 10 May 2004
Application note AN-253 LH0024 and LH0032 High Speed Op Amp Applications 02 May 2004
Application note AN-275 CMOS D/A Converters Match Most Microprocessors 02 May 2004
Application note AN-447 Protection Schemes for BI-FET Amplifiers and Switches 02 May 2004
Application note Get Fast Stable Response From Improved Unity-Gain Followers 02 Oct 2002

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Simulation model

LF356 PSPICE Model

SNOM255.ZIP (1 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
PDIP (P) 8 Ultra Librarian
SOIC (D) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos