Product details

Local sensor accuracy (max) 0.5, 1 Operating temperature range (°C) -55 to 150 Supply voltage (min) (V) 4 Supply voltage (max) (V) 30 Supply current (max) (µA) 114 Interface type Analog output Sensor gain (mV/°C) 10 Rating Catalog Features UL recognized
Local sensor accuracy (max) 0.5, 1 Operating temperature range (°C) -55 to 150 Supply voltage (min) (V) 4 Supply voltage (max) (V) 30 Supply current (max) (µA) 114 Interface type Analog output Sensor gain (mV/°C) 10 Rating Catalog Features UL recognized
SOIC (D) 8 29.4 mm² 4.9 x 6 TO-220 (NEB) 3 46.4312 mm² 10.16 x 4.57 TO-92 (LP) 3 19.136 mm² 5.2 x 3.68 TO-CAN (NDV) 3 34.8704 mm² 6.41 x 5.44
  • Calibrated Directly in Celsius (Centigrade)
  • Linear + 10-mV/°C Scale Factor
  • 0.5°C Ensured Accuracy (at 25°C)
  • Rated for Full −55°C to 150°C Range
  • Suitable for Remote Applications
  • Low-Cost Due to Wafer-Level Trimming
  • Operates From 4 V to 30 V
  • Less Than 60-µA Current Drain
  • Low Self-Heating, 0.08°C in Still Air
  • Non-Linearity Only ±¼°C Typical
  • Low-Impedance Output, 0.1 Ω for 1-mA Load
  • Calibrated Directly in Celsius (Centigrade)
  • Linear + 10-mV/°C Scale Factor
  • 0.5°C Ensured Accuracy (at 25°C)
  • Rated for Full −55°C to 150°C Range
  • Suitable for Remote Applications
  • Low-Cost Due to Wafer-Level Trimming
  • Operates From 4 V to 30 V
  • Less Than 60-µA Current Drain
  • Low Self-Heating, 0.08°C in Still Air
  • Non-Linearity Only ±¼°C Typical
  • Low-Impedance Output, 0.1 Ω for 1-mA Load

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 µA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The LM35-series devices are available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D devices are available in the plastic TO-92 transistor package. The LM35D device is available in an 8-lead surface-mount small-outline package and a plastic TO-220 package.

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 µA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The LM35-series devices are available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D devices are available in the plastic TO-92 transistor package. The LM35D device is available in an 8-lead surface-mount small-outline package and a plastic TO-220 package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
NEW ISOTMP35 ACTIVE 1.2°C basic isolated temperature sensor with 10mV/°C analog output First-in-market integrated isolation with the same sensor gain (10 mV/°C). Higher accuracy (±1.2°C) and wider temperature range (-40 to 150°C).
LM50 ACTIVE ±2°C analog output temperature sensor, with 10mV/°C gain Equivalent sensor gain (10 mV/°C) in smaller package and supports a wider voltage supply range (4.5 to 10 V)
TMP235 ACTIVE 1C analog temperature sensor, 10 mV/C Same sensor gain (10 mV/°C) in smaller packages, lower IQ (12 μA), and supports a lower voltage supply (2.3 V)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 8
Type Title Date
* Data sheet LM35 Precision Centigrade Temperature Sensors datasheet (Rev. H) PDF | HTML 21 Dec 2017
Circuit design Low-input bias-current front end SAR ADC circuit (Rev. A) 11 Mar 2019
Application note Temperature sensors: PCB guidelines for surface mount devices (Rev. A) 18 Jan 2019
Certificate UL Certificate of Compliance Vol1-Sec14 E232195 06 Aug 2018
Technical article What are you sensing? Pros and cons of four temperature sensor types PDF | HTML 26 Aug 2015
Application note Thermocouple, Cold-Junction Compensation—Analog Approach 27 Aug 2014
Application note AN-1852 Designing With pH Electrodes (Rev. A) 01 May 2013
Application note AN-460 LM34/LM35 Precision Monolithic Temperature Sensors (Rev. C) 01 May 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Code example or demo

SLOC348 LM35 Arduino Example Code v1.0

Supported products & hardware

Supported products & hardware

Products
Analog temperature sensors
LM35 1C high voltage analog temperature sensor, 10 mV/C
Reference designs

TIDA-01576 — High accuracy analog input module reference design with 16-bit 1-MSPS dual simultaneous-sampling ADC

This reference design accurately measures 16-channel AC voltage and current inputs using a precision 16-bit SAR ADC over a wide input range. This range covers protection and measurement requirements (including sampling requirements as per IEC 61850-9-2), which simplifies system design and improves (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 8 Ultra Librarian
TO-220 (NEB) 3 Ultra Librarian
TO-92 (LP) 3 Ultra Librarian
TO-CAN (NDV) 3 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos