Product details

Local sensor accuracy (max) 1.5 Operating temperature range (°C) -50 to 150 Supply voltage (min) (V) 1.5 Supply voltage (max) (V) 5.5 Supply current (max) (µA) 8.1 Interface type Analog output Sensor gain (mV/°C) -13.6, -10.9, -8.2, -5.5 Rating Catalog Features Selectable gain setting, UL recognized
Local sensor accuracy (max) 1.5 Operating temperature range (°C) -50 to 150 Supply voltage (min) (V) 1.5 Supply voltage (max) (V) 5.5 Supply current (max) (µA) 8.1 Interface type Analog output Sensor gain (mV/°C) -13.6, -10.9, -8.2, -5.5 Rating Catalog Features Selectable gain setting, UL recognized
SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1
  • LM94022/-Q1 is AEC-Q100 Grade 0 qualified and
    is Manufactured on an Automotive Grade Flow
  • Low 1.5-V to 5.5-V Operation With Low 5.4-µA
    Supply Current
  • Push-Pull Output With ±50-µA Source Current Capability
  • Four Selectable Gains
  • Very Accurate Over Wide Temperature Range of
    −50°C to +150°C:
    • ±1.5ºC Temperature Accuracy for 20ºC to
      40ºC Range
    • ±1.8ºC Temperature Accuracy for –50ºC to
      70ºC Range
    • ±2.1ºC Temperature Accuracy for –50ºC to
      90ºC Range
    • ±2.7ºC Temperature Accuracy for –50ºC to
      150ºC Range
  • Output is Short-Circuit Protected
  • Extremely Small SC70 Package
  • For the Similar Functionality in a TO-92 Package,
    See LMT84, LMT85, LMT86, or LMT87
  • Footprint Compatible With the Industry-Standard
    LM20 Temperature Sensor
  • LM94022/-Q1 is AEC-Q100 Grade 0 qualified and
    is Manufactured on an Automotive Grade Flow
  • Low 1.5-V to 5.5-V Operation With Low 5.4-µA
    Supply Current
  • Push-Pull Output With ±50-µA Source Current Capability
  • Four Selectable Gains
  • Very Accurate Over Wide Temperature Range of
    −50°C to +150°C:
    • ±1.5ºC Temperature Accuracy for 20ºC to
      40ºC Range
    • ±1.8ºC Temperature Accuracy for –50ºC to
      70ºC Range
    • ±2.1ºC Temperature Accuracy for –50ºC to
      90ºC Range
    • ±2.7ºC Temperature Accuracy for –50ºC to
      150ºC Range
  • Output is Short-Circuit Protected
  • Extremely Small SC70 Package
  • For the Similar Functionality in a TO-92 Package,
    See LMT84, LMT85, LMT86, or LMT87
  • Footprint Compatible With the Industry-Standard
    LM20 Temperature Sensor

The LM94022/-Q1 device is a precision analog output CMOS integrated-circuit temperature sensor with selectable linear negative temperature coefficient (NTC). A class-AB output structure gives the LM94022/-Q1 strong output source and sink current capability for driving heavy transient loads such as that presented by the input of a sample-and-hold analog-to-digital converter. The low 5.4-µA supply current and 1.5-V operating voltage of the LM94022/-Q1 make it ideal for battery-powered systems as well as general temperature-sensing applications.

The Gain Select 1 (GS1) and Gain Select 0 (GS0) logic inputs select one of four gains for the temperature-to-voltage output transfer function: −5.5 mV/°C, −8.2 mV/°C, −10.9 mV/°C, and −13.6 mV/°C. Selecting –5.5 mV/°C (GS1 and GS0 both tied low), allows the LM94022/-Q1 to operate down to 1.5-V supply while measuring temperature over the full range of −50°C to +150°C. Maximum temperature sensitivity, –13.6 mV/°C, is selected when GS1 and GS0 are both tied high. The gain-select inputs can be tied directly to VDD or Ground without any pullup or pulldown resistors, reducing component count and board area. These inputs can also be driven by logic signals allowing the system to optimize the gain during operation or system diagnostics.

The LM94022/-Q1 device is a precision analog output CMOS integrated-circuit temperature sensor with selectable linear negative temperature coefficient (NTC). A class-AB output structure gives the LM94022/-Q1 strong output source and sink current capability for driving heavy transient loads such as that presented by the input of a sample-and-hold analog-to-digital converter. The low 5.4-µA supply current and 1.5-V operating voltage of the LM94022/-Q1 make it ideal for battery-powered systems as well as general temperature-sensing applications.

The Gain Select 1 (GS1) and Gain Select 0 (GS0) logic inputs select one of four gains for the temperature-to-voltage output transfer function: −5.5 mV/°C, −8.2 mV/°C, −10.9 mV/°C, and −13.6 mV/°C. Selecting –5.5 mV/°C (GS1 and GS0 both tied low), allows the LM94022/-Q1 to operate down to 1.5-V supply while measuring temperature over the full range of −50°C to +150°C. Maximum temperature sensitivity, –13.6 mV/°C, is selected when GS1 and GS0 are both tied high. The gain-select inputs can be tied directly to VDD or Ground without any pullup or pulldown resistors, reducing component count and board area. These inputs can also be driven by logic signals allowing the system to optimize the gain during operation or system diagnostics.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
LM94022-Q1 ACTIVE Automotive Grade, ±1.5°C Temperature Sensor with Multiple Gain and Class-AB Analog Output Automotive qualified version
Pin-for-pin with same functionality to the compared device
LM94021 ACTIVE ±1.5°C Temperature Sensor with Multiple Gain Analog Output Options Equivalent pin-compatible version with lower output source current capability (≤ 2µA)
LMT84-Q1 ACTIVE Automotive Grade, 1.5V-Capable,10 uA Analog Output Temperature Sensor Fixed sensor gain (-5.5 mV/°C) with lower accuracy (±2.7°C) and similar pinout
LMT85-Q1 ACTIVE Automotive Grade, 1.8V-Capable, 10 uA Analog Output Temperature Sensor Fixed sensor gain (-8.2 mV/°C) with lower accuracy (±2.7°C) and similar pinout
LMT86-Q1 ACTIVE Automotive Grade, 2.2V-Capable, 10 uA Analog Output Temperature Sensor Fixed sensor gain (-10.9 mV/°C) with lower accuracy (±2.7°C) and similar pinout
LMT87-Q1 ACTIVE Automotive ±2.7°C 2.7V to 5.5V analog output temperature sensor with -13.6 mV/°C gain Fixed sensor gain (-13.6 mV/°C) with lower accuracy (±2.7°C) and similar pinout

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet LM94022/-Q1 1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output datasheet (Rev. F) PDF | HTML 29 Sep 2015
Certificate UL Certification 20141125-E232195 Vol 1 Sec 7 17 Nov 2023
EVM User's guide LM9402xEVM User's Guide 12 Sep 2013
User guide WEBENCH® Sensor Designer Thermocouple Sensor Ver 1 PCB (unpopulated) User Guide 27 Jan 2012
Design guide LM94021 LM94022 LM94023 Design Aid (Rev. A) 26 Jan 2012
White paper Temperature sensor solutions for low-voltage systems 11 May 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

LM9402XEVM — Evaluation Module for Multi-Gain Analog Temperature Sensor

The Texas Instruments LM9402xEVM evaluation module helps designers evaluate the operation and performance of the LM94021, LM94022, and LM94023 analog temperature sensors.

User guide: PDF
Not available on TI.com
Calculation tool

LM94021-2QUICK-CALC — LM94021 and LM94022 Voltage-to-Temperature Transfer Function Table

Calculation tool

LM9403X-DESIGNAID-CALC — LM94021 LM94022 LM94023 Design Aid

Reference designs

TIDEP0054 — Parallel Redundancy Protocol (PRP) Ethernet Reference Design for Substation Automation

This is a reference design for high-reliability, low-latency network communications for substation automation equipment in smart grid transmission and distribution networks. It supports the parallel redundancy protocol (PRP) specification in the IEC 62439 standard using the PRU-ICSS. This reference (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDEP0043 — Acontis EtherCAT Master Stack Reference Design

The acontis EC-Master EtherCAT Master stack is a highly portable software stack that can be used on various embedded platforms. The EC-Master supports the high performance TI Sitara MPUs,  it provides a sophisticated EtherCAT Master solution which customers can use to implement EtherCAT (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00018 — Temperature Sensor Interface Module for Programmable Logic Controllers (PLC)

The TIDA-00018 reference design enables faster development of high precision temperature measurement solutions using 24-Bit delta-sigma ADC and most widely used temperature sensors like thermocouple and RTD. The design guide will address the sensor signal conditioning, thermocouple cold junction (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOT-SC70 (DCK) 5 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos