SN74FB1653

ACTIVE

17-bit LVTTL/BTL universal storage transceivers with buffered clock lines

Product details

Technology family FB Applications GTL Rating Catalog Operating temperature range (°C) 0 to 70
Technology family FB Applications GTL Rating Catalog Operating temperature range (°C) 0 to 70
HLQFP (PCA) 100 256 mm² 16 x 16
  • Compatible With IEEE Std 1194.1-1991 (BTL)
  • LVTTL A Port, Backplane Transceiver Logic (BTL) B\ Port
  • Open-Collector B\-Port Outputs Sink 100 mA
  • B\-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
  • High-Impedance State During Power Up and Power Down
  • Selectable Clock Delay
  • TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination
  • BIAS VCC Minimizes Signal Distortion During Live Insertion/Withdrawal

  • Compatible With IEEE Std 1194.1-1991 (BTL)
  • LVTTL A Port, Backplane Transceiver Logic (BTL) B\ Port
  • Open-Collector B\-Port Outputs Sink 100 mA
  • B\-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
  • High-Impedance State During Power Up and Power Down
  • Selectable Clock Delay
  • TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination
  • BIAS VCC Minimizes Signal Distortion During Live Insertion/Withdrawal

The SN74FB1653 contains an 8-bit and a 9-bit transceiver with a buffered clock. The clock and transceivers are designed to translate signals between LVTTL and BTL environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991 (BTL).

The A port operates at LVTTL signal levels. The A outputs reflect the inverse of the data at the B\ port when the A-port output enable (OEA) is high. When OEA is low or when VCC(5 V) typically is less than 2.5 V, the A outputs are in the high-impedance state.

The B\ port operates at BTL signal levels. The open-collector B\ ports are specified to sink 100 mA. Two output enables (OEB and OEB)\ are provided for the B\ outputs. When OEB is low, OEB\ is high, or VCC(5 V) typically is less than 2.5 V, the B port is turned off.

The clock-select (2SEL1 and 2SEL2) inputs are used to configure the TTL-to-BTL clock paths and delays (refer to the MUX-MODE DELAY table).

BIAS VCC establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when VCC(5 V) is not connected.

BG VCC and BG GND are the supply inputs for the bias generator.

VREF is an internally generated voltage source. It is recommended that VREF be decoupled with a 0.1-µF capacitor.

Enhanced heat-dissipation techniques should be used when operating this device from AI to A0 at frequencies greater than 50 MHz, or from AI to B\ or B\ to A0 at frequencies greater than 100 MHz.

The SN74FB1653 contains an 8-bit and a 9-bit transceiver with a buffered clock. The clock and transceivers are designed to translate signals between LVTTL and BTL environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991 (BTL).

The A port operates at LVTTL signal levels. The A outputs reflect the inverse of the data at the B\ port when the A-port output enable (OEA) is high. When OEA is low or when VCC(5 V) typically is less than 2.5 V, the A outputs are in the high-impedance state.

The B\ port operates at BTL signal levels. The open-collector B\ ports are specified to sink 100 mA. Two output enables (OEB and OEB)\ are provided for the B\ outputs. When OEB is low, OEB\ is high, or VCC(5 V) typically is less than 2.5 V, the B port is turned off.

The clock-select (2SEL1 and 2SEL2) inputs are used to configure the TTL-to-BTL clock paths and delays (refer to the MUX-MODE DELAY table).

BIAS VCC establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when VCC(5 V) is not connected.

BG VCC and BG GND are the supply inputs for the bias generator.

VREF is an internally generated voltage source. It is recommended that VREF be decoupled with a 0.1-µF capacitor.

Enhanced heat-dissipation techniques should be used when operating this device from AI to A0 at frequencies greater than 50 MHz, or from AI to B\ or B\ to A0 at frequencies greater than 100 MHz.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 15
Type Title Date
* Data sheet SN74FB1653 datasheet (Rev. H) 10 Mar 2004
Application note Schematic Checklist - A Guide to Designing with Auto-Bidirectional Translators PDF | HTML 12 Jul 2024
Application note Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 03 Jul 2024
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note GTL/BTL: A Low-Swing Solution for High-Speed Digital Logic (Rev. A) 01 Mar 1997
Application note Next-Generation BTL/Futurebus Transceivers Allow Single-Sided SMT Manufacturing (Rev. C) 01 Mar 1997
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

SN74FB1653 IBIS Model (Rev. C)

SCBM012C.ZIP (26 KB) - IBIS Model
Package Pins CAD symbols, footprints & 3D models
HLQFP (PCA) 100 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos