SN74LS377

ACTIVE

Octal D-Type Flip-Flops With Clock Enable

Product details

Number of channels 8 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Clock frequency (max) (MHz) 35 IOL (max) (mA) 8 IOH (max) (mA) -0.4 Supply current (max) (µA) 28000 Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Number of channels 8 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Clock frequency (max) (MHz) 35 IOL (max) (mA) 8 IOH (max) (mA) -0.4 Supply current (max) (µA) 28000 Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 20 228.702 mm² 24.33 x 9.4 SOIC (DW) 20 131.84 mm² 12.8 x 10.3 SOP (NS) 20 98.28 mm² 12.6 x 7.8
  • 'LS377 and 'LS378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
  • 'LS379 Contains Four Flip-Flops with Double-Rail Outputs
  • Individual Data Input to Each Flip-Flop
  • Applications Include:
    • Buffer/Storage Registers
    • Shift Registers
    • Pattern Generators

 

  • 'LS377 and 'LS378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
  • 'LS379 Contains Four Flip-Flops with Double-Rail Outputs
  • Individual Data Input to Each Flip-Flop
  • Applications Include:
    • Buffer/Storage Registers
    • Shift Registers
    • Pattern Generators

 

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with an enable input. The 'LS377, 'LS378, and 'LS379 devices are similar to 'LS273, 'LS174, and 'LS175, respectively, but feature a common enable instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the enable input G\ is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the G\ input.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 MHz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts per flip-flop.

 

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with an enable input. The 'LS377, 'LS378, and 'LS379 devices are similar to 'LS273, 'LS174, and 'LS175, respectively, but feature a common enable instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the enable input G\ is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the G\ input.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 MHz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts per flip-flop.

 

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
CD74ACT374 ACTIVE Octal D-Type Flip-Flops with 3-State Outputs Shorter average propagation delay (8ns), higher average drive strength (24mA)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet Octal, Hex, And Quad D-Type Flip-Flops With Enable datasheet 01 Mar 1988
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Designing with the SN54/74LS123 (Rev. A) 01 Mar 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Package Pins CAD symbols, footprints & 3D models
PDIP (N) 20 Ultra Librarian
SOIC (DW) 20 Ultra Librarian
SOP (NS) 20 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos