TL022

ACTIVE

Dual, 30-V, 500-kHz operational amplifier

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9302 ACTIVE Dual, 40-V, 1-MHz, low-power operational amplifier Lower Vos(2.5mV) and higher slew rate(3.5V/us) for your cost-optimized applications

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 30 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail No GBW (typ) (MHz) 0.5 Slew rate (typ) (V/µs) 0.5 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.065 Vn at 1 kHz (typ) (nV√Hz) 50 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 0 Input bias current (max) (pA) 100000 CMRR (typ) (dB) 72 Iout (typ) (A) 0.006 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 2 Input common mode headroom (to positive supply) (typ) (V) -2 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 30 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 10 Rail-to-rail No GBW (typ) (MHz) 0.5 Slew rate (typ) (V/µs) 0.5 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.065 Vn at 1 kHz (typ) (nV√Hz) 50 Rating Catalog Operating temperature range (°C) 0 to 70 Offset drift (typ) (µV/°C) 0 Input bias current (max) (pA) 100000 CMRR (typ) (dB) 72 Iout (typ) (A) 0.006 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 2 Input common mode headroom (to positive supply) (typ) (V) -2 Output swing headroom (to negative supply) (typ) (V) 2 Output swing headroom (to positive supply) (typ) (V) -2
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6 SOP (PS) 8 48.36 mm² 6.2 x 7.8
  • Very Low Power Consumption
  • Power Dissipation With ±2-V Supplies
    170 uW Typ
  • Low Input Bias and Offset Currents
  • Output Short-Circuit Protection
  • Low Input Offset Voltage
  • Internal Frequency Compensation
  • Latch-Up-Free Operation
  • Popular Dual Operational Amplifier Pinout

TL022M IS NOT RECOMMENDED FOR
NEW DESIGNS

  • Very Low Power Consumption
  • Power Dissipation With ±2-V Supplies
    170 uW Typ
  • Low Input Bias and Offset Currents
  • Output Short-Circuit Protection
  • Low Input Offset Voltage
  • Internal Frequency Compensation
  • Latch-Up-Free Operation
  • Popular Dual Operational Amplifier Pinout

TL022M IS NOT RECOMMENDED FOR
NEW DESIGNS

The TL022 is a dual low-power operational amplifier designed to replace higher power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use.

The TL022C is characterized for operation from 0°C to 70°C. The TL022M is characterized for operation over the full military temperature range of -55°C to 125°C.

The TL022 is a dual low-power operational amplifier designed to replace higher power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use.

The TL022C is characterized for operation from 0°C to 70°C. The TL022M is characterized for operation over the full military temperature range of -55°C to 125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 5
Type Title Date
* Data sheet Dual Low-Power Operational Amplifiers datasheet 01 Sep 1990
Application note 연산 증폭기 사양에 대한 이해 (Rev. B) PDF | HTML 02 May 2023
Application note Understanding Operational Amplifier Specifications (Rev. B) PDF | HTML 16 Aug 2021
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note Handbook of Operational Amplifier Applications (Rev. B) 19 Sep 2016

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DUAL-DIYAMP-EVM — Dual-channel universal do-it-yourself (DIY) amplifier circuit evaluation module

The DUAL-DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling quick evaluation of design concepts and verify simulations. It is designed specifically for dual package op amps in the (...)

User guide: PDF
Not available on TI.com
Simulation model

TL022C PSpice Model

SLOJ055.ZIP (0 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
PDIP (P) 8 Ultra Librarian
SOIC (D) 8 Ultra Librarian
SOP (PS) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos