ZHCSMR1C october   2019  – september 2021 UCC5870-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Electrical Characteristics
    8. 6.8  SPI Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supplies
        1. 7.3.1.1 VCC1
        2. 7.3.1.2 VCC2
        3. 7.3.1.3 VEE2
        4. 7.3.1.4 VREG1
        5. 7.3.1.5 VREG2
        6. 7.3.1.6 VREF
        7. 7.3.1.7 Other Internal Rails
      2. 7.3.2 Driver Stage
      3. 7.3.3 Integrated ADC for Front-End Analog (FEA) Signal Processing
        1. 7.3.3.1 AI* Setup
        2. 7.3.3.2 ADC Setup and Sampling Modes
          1. 7.3.3.2.1 Center Sampling Mode
          2. 7.3.3.2.2 Edge Sampling Mode
          3. 7.3.3.2.3 Hybrid Mode
        3. 7.3.3.3 DOUT Functionality
      4. 7.3.4 Fault and Warning Classification
      5. 7.3.5 Diagnostic Features
        1. 7.3.5.1  Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO)
          1. 7.3.5.1.1 Built-In Self Test (BIST)
            1. 7.3.5.1.1.1 Analog Built-In Self Test (ABIST)
            2. 7.3.5.1.1.2 Function BIST
            3. 7.3.5.1.1.3 Clock Monitor
              1. 7.3.5.1.1.3.1 Clock Monitor Built-In Self Test
        2. 7.3.5.2  CLAMP, OUTH, and OUTL Clamping Circuits
        3. 7.3.5.3  Active Miller Clamp
        4. 7.3.5.4  DESAT based Short Circuit Protection (DESAT)
        5. 7.3.5.5  Shunt Resistor based Overcurrent Protection (OCP) and Short Circuit Protection (SCP)
        6. 7.3.5.6  Temperature Monitoring and Protection for the Power Transistors
        7. 7.3.5.7  Active High Voltage Clamping (VCECLP)
        8. 7.3.5.8  Two-Level Turn-Off
        9. 7.3.5.9  Soft Turn-Off (STO)
        10. 7.3.5.10 Thermal Shutdown (TSD) and Temperature Warning (TWN) of Driver IC
        11. 7.3.5.11 Active Short Circuit Support (ASC)
        12. 7.3.5.12 Shoot-Through Protection (STP)
        13. 7.3.5.13 Gate Voltage Monitoring and Status Feedback
        14. 7.3.5.14 VGTH Monitor
        15. 7.3.5.15 Cyclic Redundancy Check (CRC)
          1. 7.3.5.15.1 Calculating CRC
        16. 7.3.5.16 Configuration Data CRC
        17. 7.3.5.17 SPI Transfer Write/Read CRC
          1. 7.3.5.17.1 SDI CRC Check
          2. 7.3.5.17.2 SDO CRC Check
        18. 7.3.5.18 TRIM CRC Check
    4. 7.4 Device Functional Modes
      1. 7.4.1 State 1: RESET
      2. 7.4.2 State 2: Configuration 1
      3. 7.4.3 State 3: Configuration 2
      4. 7.4.4 State 4: Active
    5. 7.5 Programming
      1. 7.5.1 SPI Communication
        1. 7.5.1.1 System Configuration of SPI Communication
          1. 7.5.1.1.1 Independent Slave Configuration
          2. 7.5.1.1.2 Daisy Chain Configuration
          3. 7.5.1.1.3 Address-based Configuration
        2. 7.5.1.2 SPI Data Frame
          1. 7.5.1.2.1 Writing a Register
          2. 7.5.1.2.2 Reading a Register
    6. 7.6 Register Maps
      1. 7.6.1 UCC5870 Registers
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Dissipation Considerations
      2. 8.1.2 Device Addressing
    2. 8.2 Typical Application Using Internal ADC Reference and Power FET Sense Current Monitoring
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 VCC1, VCC2, and VEE2 Bypass Capacitors
        2. 8.2.2.2 VREF, VREG1, and VREG2 Bypass Capacitors
        3. 8.2.2.3 Bootstrap Capacitor (VBST)
        4. 8.2.2.4 VCECLP Input
        5. 8.2.2.5 External CLAMP Output
        6. 8.2.2.6 AI* Inputs
        7. 8.2.2.7 OUTH/ OUTL Outputs
        8. 8.2.2.8 nFLT* Outputs
      3. 8.2.3 Application Curves
    3. 8.3 Typical Application Using DESAT Power FET Monitoring
      1. 8.3.1 Detailed Design Procedure
        1. 8.3.1.1 DESAT Input
      2. 8.3.2 Application Curves
  9. Power Supply Recommendations
    1. 9.1 VCC1 Power Supply
    2. 9.2 VCC2 Power Supply
    3. 9.3 VEE2 Power Supply
    4. 9.4 VREF Supply (Optional)
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Component Placement
      2. 10.1.2 Grounding Considerations
      3. 10.1.3 High-Voltage Considerations
      4. 10.1.4 Thermal Considerations
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Fault and Warning Classification

The device integrates extensive error detection and monitoring features. These features allow the design of a robust system that protects against a variety of system related failure modes. When one of the monitored warnings or faults occurs, if unmasked, the nFLT1 output (for faults) or the nFLT2 output (for warnings) pulls low. All of the fault and warning bits have corresponding configuration bits that allow the user to mask the error or fault from showing up on the nFLT* output. The naming convention is straightforward. The mask bit is in a CFG* register and is named the same as the fault with the addition of an "_P". For example, a power FET short circuit current fault is indicated in the register bit STATUS3[SC_FAULT] (STATUS3)and the mask bit is CFG9[SC_FAULT_P] (CFG9). Throughout this document, the different warning/error bit locations are indicated in the functional description of the block where the warning/fault is monitored. When masked, the nFLT* indication does not occur, but the STATUS* bits still indicate the warning/fault condition. The device classifies error events into two categories, Warnings and Faults, and takes different device actions depending on the error classification.

The Warning error class is used to report non-critical fault conditions. Warning errors are only reported with no action taken to affect the gate driver output or any other block. When a warning condition occurs, it is reported in on of the STATUS* registers and, if unmasked, the nFLT2 output is driven low. The nFLT2 indication for warning is cleared by a successful SPI read of the corresponding status register. Once cleared, warning indication is not repeated until the warning condition is removed and reapplied. For example, in an over temperature warning condition, after reading/clearing the bit the temperature must cool down to the normal operating range and then heat up again to the over temperature warning threshold for the error flag to be reasserted. The status bit always indicates the current state of the warning, and is not cleared until the error condition is removed.

The Fault error class is used to report critical fault conditions. Fault errors have the ability to shut down the gate driver when they occur. When a fault condition occurs, it is reported in one of the STATUS* registers and, if unmasked, the nFLT1 output is driven low. Many faults have a corresponding configuration bit that enables the user to select the functional safe state of the driver when that fault occurs when the fault is not masked. These bits are in the CFG* registers, with bit names that start with "FS_STATE_". Throughout this document, the FS_STATE locations are indicated in the functional description of the block where the fault is monitored. The available options for the output state, depending on the fault, are PL (OUTL pulled low), PH (OUTH pulled high), or no action (gate driver output ignores the fault and continues normal operation). Faults are cleared when the condition is removed, and the CONTROL2[CLR_STAT_REG] bit (CONTROL2) is written. Fault indication reasserts as long as the fault condition exists and is unmasked. Table 7-1 provides an extensive list and details for the available faults and warnings.

Table 7-1 Fault and Warning Operating Modes (default)
NAME(1) INDICATOR BIT DRIVER OUTPUT
(Default Action and Control bit)
SPI nFLT1
(Default Action and Control bit)
nFLT2 Recovery operation
UVLO of VCC1 fault STATUS2[UVLO1_FAULT] = 1 PL
CFG3[FS_STATE_UVLO1_FAULT]
D (Not latched. SPI is re-enabled if VCC1 voltage is above the UV threshold) Assert
CFG2[UVLO1_FAULT_P]
- System (MCU) to re-configure the device. Rewrite all SPI configurable registers.
OVLO of VCC1 fault STATUS2[OVLO1_FAULT] = 1 PL
CFG3[FS_STATE_OVLO1_FAULT]
D(Not latched. SPI is re-enabled if VCC1 voltage is below the OV threshold) Assert
CFG2[OVLO1_FAULT_P]
- System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
UVLO of VCC2 fault STATUS3[UVLO2_FAULT] = 1 PL
CFG11[FS_STATE_UVLO2]
E Assert
CFG9[UVLO23_FAULT_P]
- System (MCU) to re-configure the device. Rewrite all SPI configurable registers.
OVLO of VCC2 fault STATUS3[OVLO2_FAULT] = 1 PL
CFG11[FS_STATE_OVLO2]
E Assert
CFG9[OVLO23_FAULT_P]
- System (MCU or other controller) to cycle VCC2 and re-configure the device. Rewrite all SPI configurable registers.
UVLO of VEE2 fault STATUS3[UVLO3_FAULT] = 1 PL
CFG11[FS_STATE_UVLO3]
E Assert
CFG9[UVLO23_FAULT_P]
- CLR_STAT_REG=1
OVLO of VEE2 fault STATUS3[OVLO3_FAULT] = 1 PL
CFG11[FS_STATE_OVLO3]
E Assert
CFG9[OVLO23_FAULT_P]
- CLR_STAT_REG=1
Driver IC over temperature warning STATUS1[GD_TWN_PRI_FAULT] = 1 (primary)
STATUS4[GD_TWN_SEC_FAULT] = 1 (secondary)
NA E - Assert
CFG2[GD_TWN_PRI_FAULT_P]
-
Driver IC over temperature shutdown fault (secondary) STATUS4[GD_TSD_SEC_FAULT] = 1
Additionally, the STATUS2[CLK_MON_PRI_FAULT] 1 and STATUS2[INT_COMM_PRI_FAULT] indicate faults
PL E Assert
CFG9[GD_TSD_FAULT_P]
- System to cycle VCC2 power and re-configure the device after allowing the device to cool. Rewrite all SPI configurable registers.
Driver IC over temperature shutdown fault (primary) - PL D - - System to re-configure the device. Rewrite all SPI configurable registers.
Power transistor over current fault STATUS3[OC_FAULT] = 1 PL
CFG10[FS_STATE_OCP]
E Assert
CFG9[OC_FAULT_P]
- CLR_STAT_REG=1
Power transistor short circuit fault STATUS3[SC_FAULT] = 1 or STATUS3[DESAT_FAULT] = 1 PL
CFG10[FS_STATE_DESAT_SCP]
E Assert
CFG9[SC_FAULT_P]
- CLR_STAT_REG=1
Power transistor over temperature fault STATUS3[PS_TSD_FAULT] = 1 PL
CFG10[FS_STATE_PS_TSD]
E Assert
CFG9[PS_TSD_FAULT_P]
- CLR_STAT_REG=1
Gate voltage monitor fault STATUS3[GM_FAULT] = 1 HiZ
CFG10[FS_STATE_GM]
E Assert
CFG9[GM_FAULT_P]
Not Asserted
CFG9[GM_FAULT_P]
CLR_STAT_REG=1
PWM shoot through fault and STP diagnostic STATUS2[STP_FAULT] = 1 PL
CFG3[FS_STATE_STP_FAULT]
E Assert
CFG2[STP_FAULT_P]
- CLR_STAT_REG=1
Clock monitor fault (primary) STATUS4[CLK_MON_SEC_FAULT] = 1 PL
CFG11[FS_STATE_CLK_MON_SEC_FAULT]
D(Not latched. SPI is re-enabled if the clock recovers) Assert
CFG2[CLK_MON_SEC_FAULT_P]
- System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
Clock monitor fault (secondary) STATUS2[CLK_MON_PRI_FAULT] = 1 PL E Assert
CFG2[CLK_MON_PRI_FAULT_P]
- System (MCU or other controller) to cycle VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Internal regulator UVLO fault STATUS2[INT_REG_PRI_FAULT] = 1 (priamry)
STATUS3[INT_REG_SEC_FAULT] = 1 (secondary)
PL
CFG3[FS_STATE_INT_REG_PRI_FAULT] (primary)
CFG10[FS_STATE_INT_REG_SEC_FAULT] (secondary)
E Assert
CFG2[INT_REG_PRI_FAULT_P]
- System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Internal regulator OVLO fault STATUS2[INT_REG_PRI_FAULT] = 1 (primary)
STATUS3[INT_REG_SEC_FAULT] = 1 (secondary)
PL
CFG3[FS_STATE_INT_REG_PRI_FAULT] (primary)
CFG10[FS_STATE_INT_REG_SEC_FAULT] (secondary)
E Assert
CFG2[INT_REG_PRI_FAULT_P]
- System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
VREG1 OVLO fault - Results in a secondary internal communication fault. See the internal communication fault line for behavior D Assert - System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
VREG2 OVLO fault - Results in ia primary internal communication fault. See the internal communication fault line for behavior E Results in a primary internal communication fault. See the internal communication fault line for behavior - System (MCU or other controller) to cycle VCC2 and re-configure the device. Rewrite all SPI configurable registers.
SPI clock fault STATUS2[SPI_FAULT] = 1 NA
CFG3[FS_STATE_SPI_FAULT]
E Not Asserted
CFG2[SPI_FAULT_P]
Assert
CFG2[SPI_FAULT_P]
System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
SPI address fault STATUS2[SPI_FAULT] = 1 NA
CFG3[FS_STATE_SPI_FAULT]
E Not Asserted
CFG2[SPI_FAULT_P]
Assert
CFG2[SPI_FAULT_P]
System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
SPI CRC fault STATUS2[SPI_FAULT] = 1 NA
CFG3[FS_STATE_SPI_FAULT]
E Not Asserted
CFG2[SPI_FAULT_P]
Assert
CFG2[SPI_FAULT_P]
System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
Configuration register CRC fault STATUS2[CFG_CRC_PRI_FAULT] = 1 (primary)
STATUS4[CFG_CRC_SEC_FAULT] = 1 (secondary)
PL
CFG3[FS_STATE_CFG_CRC_PRI_FAULT] (primary)
CFG10[FS_STATE_CFG_CRC_SEC_FAULT] (secondary)
E Assert
CFG2[CFG_CRC_PRI_FAULT_P] (primary)
CFG9[CFG_CRC_SEC_FAULT_P] (secondary)
- System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
TRIM CRC fault STATUS2[TRIM_CRC_PRI_FAULT] = 1 (primary)
TRIM_CRC_SEC_FAULT = 1 (secondary)
PL
Always PL (primary)
CFG11[FS_STATE_TRIM_CRC_SEC_FAULT] (secondary)
E Assert
CFG2[CFG_CRC_PRI_FAULT_P] (primary)
CFG9[CFG_CRC_SEC_FAULT_P] (secondary)
Assert
CFG2[CFG_CRC_PRI_FAULT_P] (primary)
CFG9[CFG_CRC_SEC_FAULT_P] (secondary)
System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Clock monitor BIST fault STATUS2[BIST_PRI_FAULT] = 1 (primary)
STATUS4[BIST_SEC_FAULT] = 1 (secondary)
PL E Assert
CFG2[BIST_PRI_FAULT_P] (primary)
CFG9[BIST_SEC_FAULT_P] (secondary)
Assert
CFG2[BIST_PRI_FAULT_P] (primary)
CFG9[BIST_SEC_FAULT_P] (secondary)
System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Analog BIST fault STATUS2[BIST_PRI_FAULT] = 1 (primary)
STATUS4[BIST_SEC_FAULT] = 1 (secondary)
PL E Assert
CFG2[BIST_PRI_FAULT_P] (primary)
CFG9[BIST_SEC_FAULT_P] (secondary)
Assert
CFG2[BIST_PRI_FAULT_P] (primary)
CFG9[BIST_SEC_FAULT_P] (secondary)
System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Internal Communication fault (primary) STATUS2[INT_COMM_PRI_FAULT]=1 PL
CFG3[FS_STATE_INT_COMM_PRI_FAULT]
E Not Asserted
CFG2[INT_COMM_PRI_FAULT_P]
- System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
Internal Communication fault (secondary) STATUS3[INT_COMM_SEC_FAULT]=1 PL
CFG10[FS_STATE_INT_COMM_SEC_FAULT]
E Asserted
CFG9[INT_COMM_SEC_FAULT_P]
- System (MCU or other controller) to cycle VCC1/VCC2 and re-configure the device. Rewrite all SPI configurable registers.
PWM check fault STATUS1[PWM_COMP_CHK_FAULT] = 1 PL
CFG3[FS_STATE_PWM_CHK]
E Assert
CFG2[PWM_CHK_FAULT_P]
-
VREF UV/OV fault STATUS5[ADC_FAULT] = 1 NACFG7[FS_STATE_ADC_FAULT] E Not Asserted
CFG7[ADC_FAULT_P]
- System (MCU or other controller) to cycle VREF bias and write CLR_STAT_REG=1
VCE over voltage fault STATUS3[VCEOV_FAULT] = 1 STO E - - -
VREG1 overcurrent fault STATUS2[VREG1_ILIMIT_FAULT] = 1 NA E
Very likely that this fault causes a VREG1 UV which disbles SPI
Assert
CFG2[VREG1_ILIMIT_FAULT_P]
- System (MCU or other controller) to cycle VCC1 and re-configure the device. Rewrite all SPI configurable registers.
VREG2 overcurrent fault STATUS3[VREG2_ILIMIT_FAULT] = 1 NA E Assert
CFG9[VREG2_ILIMIT_FAULT_P]
- System (MCU or other controller) to cycle VCC2 and re-configure the device. Rewrite all SPI configurable registers.
VREF overcurrent fault STATUS5[ADC_FAULT] = 1 NA E Assert
CFG7[ADC_FAULT_P]
- System (MCU or other controller) to cycle VREF bias and write CLR_STAT_REG=1
E - Enabled, PL = Pull Low, D = Disabled, HiZ = High Impedance, NA - No Action, STO - Soft Turn-Off