ZHCAAE6B November   2018  – June 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   商标
  2. 1接地优化
    1. 1.1 常用术语/连接
    2. 1.2 使用接地平面
      1. 1.2.1 两层板技术
    3. 1.3 常见问题
      1. 1.3.1 电容耦合和电感耦合
      2. 1.3.2 共模噪声和差模噪声
    4. 1.4 EMC 注意事项
  3. 2热特性概述
    1. 2.1 PCB 传导和对流
    2. 2.2 连续顶层散热焊盘
    3. 2.3 覆铜厚度
    4. 2.4 散热过孔连接
    5. 2.5 散热过孔宽度
    6. 2.6 热设计总结
  4. 3过孔
    1. 3.1 过孔电流容量
    2. 3.2 过孔布局建议
      1. 3.2.1 多过孔布局
      2. 3.2.2 过孔的放置
  5. 4通用布线方法
  6. 5大容量电容器和旁路电容器的放置
    1. 5.1 大容量电容器的放置
    2. 5.2 电荷泵电容器
    3. 5.3 旁路电容器/去耦电容器的放置
      1. 5.3.1 靠近电源
      2. 5.3.2 靠近功率级
      3. 5.3.3 靠近开关电流源
      4. 5.3.4 靠近电流感测放大器
      5. 5.3.5 靠近稳压器
  7. 6MOSFET 的放置和功率级布线
    1. 6.1 功率 MOSFET 的常见封装
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8 引脚 SON
    2. 6.2 MOSFET 布局配置
    3. 6.3 功率级布局设计
      1. 6.3.1 开关节点
      2. 6.3.2 大电流环路路径
      3. 6.3.3 VDRAIN 感测引脚
  8. 7电流感测放大器布线
    1. 7.1 单个高侧分流器
    2. 7.2 单个低侧分流器
    3. 7.3 两相和三相分流放大器
    4. 7.4 元件选型
    5. 7.5 放置
    6. 7.6 布线
    7. 7.7 有用工具(网络节点和差分对)
    8. 7.8 输入和输出滤波器
    9. 7.9 注意事项
  9. 8参考文献
  10. 9修订历史记录

元件选型

选择感测电阻时,需要在精度和功耗之间进行基本权衡。功率级中的大电流会流经感测电阻,因此所选电阻值必须很小,以便将功率耗散保持在尽可能低的水平。对于大电流系统,电阻值通常以 mΩ 为单位。例如,驱动 20A 电流并采用 1mΩ 感测电阻的系统将通过该电阻消耗 400mW 功率。在这种情况下,CSA 的输入端只接收到 20mV 的信号。增加电阻值可提高信噪比,但也会增加功率耗散。

此外,还必须考虑 CSA 的性能参数。在针对系统中最坏情况下的电流进行设计时,所选的分流电阻应防止电流感测输入引脚上的电压高于 CSA 的绝对最大额定值。在正常运行期间,该电压必须保持在规定的差分电压范围参数内。选择感测电阻时,请参阅器件数据表。

对于使用外部增益电阻的器件,例如 DRV3201-Q1,请选择具有高精度的元件。元件不符合要求会导致系统间共模和差模增益的巨大变化。