LMV358A

ACTIVE

Dual, 5.5-V, 1-MHz, 4-mV offset voltage, RRO operational amplifier

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1.7 Vos (offset voltage at 25°C) (max) (mV) 4 Iq per channel (typ) (mA) 0.08 Vn at 1 kHz (typ) (nV√Hz) 33 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1 Features Cost Optimized, EMI Hardened, Standard Amps CMRR (typ) (dB) 77 Iout (typ) (A) 0.04 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.02 Output swing headroom (to positive supply) (typ) (V) -0.02
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1.7 Vos (offset voltage at 25°C) (max) (mV) 4 Iq per channel (typ) (mA) 0.08 Vn at 1 kHz (typ) (nV√Hz) 33 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1 Features Cost Optimized, EMI Hardened, Standard Amps CMRR (typ) (dB) 77 Iout (typ) (A) 0.04 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.02 Output swing headroom (to positive supply) (typ) (V) -0.02
SOIC (D) 8 29.4 mm² 4.9 x 6 SOT-23-THN (DDF) 8 8.12 mm² 2.9 x 2.8 TSSOP (PW) 8 19.2 mm² 3 x 6.4 VSSOP (DGK) 8 14.7 mm² 3 x 4.9
  • Low input offset voltage: ±1mV
  • Rail-to-rail output
  • Unity-gain bandwidth: 1MHz
  • Low broadband noise: 30nV/√ Hz
  • Low input bias current: 10pA
  • Low quiescent current: 70µA/Ch
  • Unity-gain stable
  • Internal RFI and EMI filter
  • Operational at supply voltages as low as 2.5V
  • Easier to stabilize with higher capacitive load due to resistive open-loop output impedance
  • Extended temperature range: –40°C to 125°C
  • Low input offset voltage: ±1mV
  • Rail-to-rail output
  • Unity-gain bandwidth: 1MHz
  • Low broadband noise: 30nV/√ Hz
  • Low input bias current: 10pA
  • Low quiescent current: 70µA/Ch
  • Unity-gain stable
  • Internal RFI and EMI filter
  • Operational at supply voltages as low as 2.5V
  • Easier to stabilize with higher capacitive load due to resistive open-loop output impedance
  • Extended temperature range: –40°C to 125°C

The LMV3xxA family includes single (LMV321A), dual (LMV358A), and quad-channel (LMV324A) low-voltage (2.5V to 5.5V) operational amplifiers (op amps) with rail-to-rail output swing capabilities. These op amps provide a cost-effective solution for space-constrained applications such as large appliances, smoke detectors, and personal electronics where low-voltage operation and high capacitive-load drive are required. The capacitive-load drive of the LMV3xxA family is 500pF, and the resistive open-loop output impedance makes stabilization easier with much higher capacitive loads. These op amps are designed specifically for low-voltage operation (2.5V to 5.5V) with performance specifications similar to the LMV3xx devices.

The robust design of the LMV3xxA family simplifies circuit design. The op amps feature unity-gain stability, an integrated RFI and EMI rejection filter, and no-phase reversal in overdrive conditions.

The LMV3xxA family is available in industry-standard packages such as SOIC, MSOP, SOT-23, and TSSOP packages.

The LMV3xxA family includes single (LMV321A), dual (LMV358A), and quad-channel (LMV324A) low-voltage (2.5V to 5.5V) operational amplifiers (op amps) with rail-to-rail output swing capabilities. These op amps provide a cost-effective solution for space-constrained applications such as large appliances, smoke detectors, and personal electronics where low-voltage operation and high capacitive-load drive are required. The capacitive-load drive of the LMV3xxA family is 500pF, and the resistive open-loop output impedance makes stabilization easier with much higher capacitive loads. These op amps are designed specifically for low-voltage operation (2.5V to 5.5V) with performance specifications similar to the LMV3xx devices.

The robust design of the LMV3xxA family simplifies circuit design. The op amps feature unity-gain stability, an integrated RFI and EMI rejection filter, and no-phase reversal in overdrive conditions.

The LMV3xxA family is available in industry-standard packages such as SOIC, MSOP, SOT-23, and TSSOP packages.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
TLV9002 ACTIVE Dual, 5.5-V, 1-MHz, RRIO operational amplifier for cost-optimized applications Rail-to-rail I/O, faster slew rate (2 V/us), lower offset voltage (1.6 mV), lower power (0.06 mA), lower noise (30 nV/√Hz)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet LMV3xxA Low-Voltage Rail-to-Rail Output Operational Amplifiers datasheet (Rev. I) PDF | HTML 22 Jul 2024
E-book An Engineer’s Guide to Designing with Precision Amplifiers 29 Apr 2021
Application note AN-31 Amplifier Circuit Collection (Rev. D) 21 Oct 2020
Analog Design Journal Second-sourcing options for small-package amplifiers 26 Mar 2018

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DUAL-DIYAMP-EVM — Dual-channel universal do-it-yourself (DIY) amplifier circuit evaluation module

The DUAL-DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling quick evaluation of design concepts and verify simulations. It is designed specifically for dual package op amps in the (...)

User guide: PDF
Not available on TI.com
Simulation model

LMV358A PSpice Model (Rev. B)

SBOMAM9B.ZIP (22 KB) - PSpice Model
Simulation model

LMV358A TINA-TI Reference Design Model

SBOMAN0.ZIP (42 KB) - TINA-TI Reference Design
Simulation model

LMV358A TINA-TI Spice Model

SBOMAN1.ZIP (4 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060020 — Inverting amplifier circuit

This design inverts the input signal, Vi , and applies a signal gain of –2 V/V. The input signal typically comes from a low-impedance source because the input impedance of this circuit is determined by the input resistor, R1. The common-mode voltage of an inverting amplifier is equal to the (...)
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

SBOC539 Simulation for Integrator in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
LMV358A Dual, 5.5-V, 1-MHz, 4-mV offset voltage, RRO operational amplifier
Design tool

SBOC547 Simulation for Offset Voltage Adjustment for Inverting Amplifiers with Source Re

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
LMV358A Dual, 5.5-V, 1-MHz, 4-mV offset voltage, RRO operational amplifier
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 8 Ultra Librarian
SOT-23-THN (DDF) 8 Ultra Librarian
TSSOP (PW) 8 Ultra Librarian
VSSOP (DGK) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos