SN74CBT16244C
- Member of the Texas Instruments Widebus™ Family
- Undershoot Protection for Off-Isolation on A and B Ports Up to –2 V
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low ON-State Resistance (ron)
- Characteristics (ron = 3 Typical)
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion (Cio(OFF) = 5.5 pF Typical)
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption (ICC = 3 µA Max)
- VCC Operating Range From 4 V to 5.5 V
- Data I/Os Support 0 to 5-V Signaling Levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: PCI Interface, USB Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating
Widebus is a trademark of Texas Instruments.
The SN74CBT16244C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT16244C provides protection for undershoot up to –2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state.
The SN74CBT16244C is organized as four 4-bit bus switches with separate output-enable (1OE\, 2OE\, 3OE\, 4OE\) inputs. It can be used as four 4-bit bus switches, two 8-bit bus switches, or as one 16-bit bus switch. When OE\ is low, the associated 4-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the associated 4-bit bus switch is OFF, and the high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
技術資料
設計および開発
その他のアイテムや必要なリソースを参照するには、以下のタイトルをクリックして詳細ページをご覧ください。
パッケージ | ピン数 | CAD シンボル、フットプリント、および 3D モデル |
---|---|---|
SSOP (DL) | 48 | Ultra Librarian |
TSSOP (DGG) | 48 | Ultra Librarian |
TVSOP (DGV) | 48 | Ultra Librarian |
購入と品質
- RoHS
- REACH
- デバイスのマーキング
- リード端子の仕上げ / ボールの原材料
- MSL 定格 / ピーク リフロー
- MTBF/FIT 推定値
- 使用原材料
- 認定試験結果
- 継続的な信頼性モニタ試験結果
- ファブの拠点
- 組み立てを実施した拠点