SBAA588A April 2024 – January 2025 LM73 , LM75B , LM95071 , TMP100 , TMP101 , TMP102 , TMP103 , TMP104 , TMP107 , TMP1075 , TMP108 , TMP112 , TMP114 , TMP116 , TMP117 , TMP121 , TMP122 , TMP123 , TMP124 , TMP126 , TMP144 , TMP175 , TMP1826 , TMP1827 , TMP275 , TMP400 , TMP401 , TMP411 , TMP421 , TMP422 , TMP423 , TMP431 , TMP432 , TMP435 , TMP451 , TMP461 , TMP464 , TMP468 , TMP4718 , TMP75 , TMP75B , TMP75C
This utility can be used for temperature conversion of any Q format encoding. This code is written and tested for a Unix-like shell. We recommend to save the source code as q.c and compile the code using cc q.c -o qapp.
#include <stdio.h>
#include <unistd.h>
void main(int argc, char *argv[])
{
int c;
uint8_t bits = 16;
uint8_t qnum = 7;
uint8_t byte1;
uint8_t byte2;
int16_t data;
int mode = 0;
while ((c = getopt(argc, argv, "b:q:hx")) != -1)
switch (c)
{
case 'b':
sscanf(optarg, "%hhi", &bits);
break;
case 'q':
sscanf(optarg, "%hhi", &qnum);
break;
case 'h':
mode = 1; /* print help */
break;
case 'x':
mode = 2; /* print example code */
}
uint8_t shift = 16 - bits;
float resolution = (float)1 / (1 << qnum);
/* recommend using a constant for resolution in application code */
if (mode == 0)
{ /* parse byte(s) and print celsius */
switch (argc - optind)
{
case 2:
sscanf(argv[optind], "%hhi", &byte1);
sscanf(argv[optind + 1], "%hhi", &byte2);
data = (int8_t)byte1 << 8 | byte2;
printf("input: %d (0x%hhX) and %d (0x%hhX) becomes %d (0x%hX)\n", byte1, byte1, byte2, byte2, data, data);
break;
case 1:
sscanf(argv[optind], "%hi", &data);
printf("input: %d (0x%hX) is assumed to be 16-bit\n", data, data);
break;
case 0:
data = 0x7FFF;
printf("demo: %d (0x%hX)\n", data, data);
break;
}
printf("%d-bit format will have %d bits discarded by right shift\n", bits, shift);
data >>= shift;
printf("q%d is %f resolution\n", qnum, resolution);
float f = data * resolution;
printf("float: %f C\n", f);
/* preserve fractional result while using int only */
int mC = data * 1000 >> qnum;
printf("int: %d mC\n", mC);
/* discard fractional result while using int only */
int C = data >> qnum;
printf("int: %d C\n", C);
}
else if (mode == 1) /* print help */
{
printf("qapp [-b bits] [-q qnum] [byte] [byte2]\n\
use -b to specify number of bits\n\
use -q to specify Q format, which describes resolution\n\
byte can be 16 bit data or the first of two 8 bit bytes\n\
byte2 is the second 8 bit byte that will be assembled with byte\n\
\n\
Device settings:\n\
TMP117, TMP114:\n\
qapp -b 16 -q 7 0x0C80\n\
TMP102, TMP112, TMP1075:\n\
qapp -b 12 -q 4 0x1900\n\
TMP102, TMP112 EM=1:\n\
qapp -b 13 -q 4 0x0C80\n\
TMP468:\n\
qapp -b 13 -q 4 0x0C80\n\
TMP107:\n\
qapp -b 14 -q 6 0x1900\n\
TMP126:\n\
qapp -b 14 -q 5 0x0C80\n\
");
}
else if (mode == 2) /* print example code */
{
/* use 24.5 to represent nominal, ambient temperature with the first fractional bit set */
int16_t exdata = 24.5f / resolution;
exdata <<= shift;
printf("C Code Examples:\n");
printf("/* %d-bit format will have %d bits discarded by right shift\n", bits, shift);
printf(" q%d is %f resolution\n", qnum, resolution);
printf(" the following bytes represent 24.5C */ \n");
printf("uint8_t byte1 = 0x%hhX;\n", exdata >> 8);
printf("uint8_t byte2 = 0x%hhX;\n", exdata);
if (shift)
printf("float f = (((int8_t) byte1 << 8 | byte2) >> %d) * %gf;\n", shift, resolution);
else
printf("float f = ((int8_t) byte1 << 8 | byte2) * %gf;\n", resolution);
if (shift)
printf("int mC = (((int8_t) byte1 << 8 | byte2) >> %d) * 1000 >> %d;\n", shift, qnum);
else
printf("int mC = ((int8_t) byte1 << 8 | byte2) * 1000 >> %d;\n", qnum);
if (shift + qnum == 8)
printf("int C = (int8_t) byte1;\n");
else if (shift)
printf("int C = (((int8_t) byte1 << 8 | byte2) >> %d) >> %d;\n", shift, qnum);
else
printf("int C = ((int8_t) byte1 << 8 | byte2) >> %d;\n", qnum);
}
}