TLV6001

ACTIVE

Single, 5.5-V, 1-MHz, RRIO operational amplifier

A newer version of this product is available

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
TLV9001 ACTIVE One-channel, 1-MHz rail-to-rail input and output 1.8-V to 5.5-V operational amplifier Better accuracy (1.6mV Vos max), lower power (0.06mA), smaller packages

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 0.5 Vos (offset voltage at 25°C) (max) (mV) 4.5 Iq per channel (typ) (mA) 0.075 Vn at 1 kHz (typ) (nV√Hz) 28 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 2 Features Cost Optimized, EMI Hardened Input bias current (max) (pA) 76 CMRR (typ) (dB) 76 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) 0.2 Output swing headroom (to negative supply) (typ) (V) 0.075 Output swing headroom (to positive supply) (typ) (V) -0.1
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 0.5 Vos (offset voltage at 25°C) (max) (mV) 4.5 Iq per channel (typ) (mA) 0.075 Vn at 1 kHz (typ) (nV√Hz) 28 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 2 Features Cost Optimized, EMI Hardened Input bias current (max) (pA) 76 CMRR (typ) (dB) 76 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.2 Input common mode headroom (to positive supply) (typ) (V) 0.2 Output swing headroom (to negative supply) (typ) (V) 0.075 Output swing headroom (to positive supply) (typ) (V) -0.1
SOT-23 (DBV) 5 8.12 mm² 2.9 x 2.8 SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1
  • Precision Amplifiers for Cost-Sensitive Systems
  • Low Quiescent Current: 75 µA/ch
  • Supply Range: 1.8 V to 5.5 V
  • Input Voltage Noise Density: 28 nV/√Hz at 1 kHz
  • Rail-to-Rail Input and Output
  • Gain Bandwidth: 1 MHz
  • Low Input Bias Current: 1 pA
  • Low Offset Voltage: 0.75 mV
  • Unity-Gain Stable
  • Internal RF and EMI Filter
  • Extended Temperature Range:
    –40°C to +125°C
  • Precision Amplifiers for Cost-Sensitive Systems
  • Low Quiescent Current: 75 µA/ch
  • Supply Range: 1.8 V to 5.5 V
  • Input Voltage Noise Density: 28 nV/√Hz at 1 kHz
  • Rail-to-Rail Input and Output
  • Gain Bandwidth: 1 MHz
  • Low Input Bias Current: 1 pA
  • Low Offset Voltage: 0.75 mV
  • Unity-Gain Stable
  • Internal RF and EMI Filter
  • Extended Temperature Range:
    –40°C to +125°C

The TLV600x family of single-, dual-, and quad-channel operational amplifiers is specifically designed for general-purpose applications. Featuring rail-to-rail input and output (RRIO) swings, low quiescent current (75 µA, typical), wide bandwidth (1 MHz) and low noise (28 nV/√Hz at 1 kHz), this family is attractive for a variety of applications that require a good balance between cost and performance, such as consumer electronics, smoke detectors, and white goods. The low-input-bias current (±1.0 pA, typical) enables the TLV600x to be used in applications with megaohm source impedances.

The robust design of the TLV600x provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 150 pF, integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

The devices are optimized for operation at voltages as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and are specified over the extended temperature range of –40°C to +125°C.

The single-channel TLV6001 is available in SC70-5 and SOT23-5 packages. The dual-channel TLV6002 is offered in SOIC-8 and VSSOP-8 packages, and the quad-channel TLV6004 is offered in a TSSOP-14 package.

The TLV600x family of single-, dual-, and quad-channel operational amplifiers is specifically designed for general-purpose applications. Featuring rail-to-rail input and output (RRIO) swings, low quiescent current (75 µA, typical), wide bandwidth (1 MHz) and low noise (28 nV/√Hz at 1 kHz), this family is attractive for a variety of applications that require a good balance between cost and performance, such as consumer electronics, smoke detectors, and white goods. The low-input-bias current (±1.0 pA, typical) enables the TLV600x to be used in applications with megaohm source impedances.

The robust design of the TLV600x provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 150 pF, integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

The devices are optimized for operation at voltages as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and are specified over the extended temperature range of –40°C to +125°C.

The single-channel TLV6001 is available in SC70-5 and SOT23-5 packages. The dual-channel TLV6002 is offered in SOIC-8 and VSSOP-8 packages, and the quad-channel TLV6004 is offered in a TSSOP-14 package.

Download View video with transcript Video

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMC1311EVM — AMC1311 evaluation module

The AMC1311 device is a high-voltage isolation amplifier with a differential output separated from the input interface circuitry by a silicon dioxide (SiO2) isolation barrier. The isolation barrier provides galvanic isolation of up to 7000 VPEAK.  When used in combination with TLV6001, the (...)

User guide: PDF
Not available on TI.com
Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DIYAMP-EVM — Universal do-it-yourself (DIY) amplifier circuit evaluation module

The DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT-23 and SOIC) (...)

User guide: PDF | HTML
Evaluation board

ISO224EVM — ISO224 evaluation module

The ISO224 evaluation module (EVM) is an evaluation platform for ISO224, which is a 7-kV reinforced isolation amplifier designed for use in voltage-measuring applications. ISO224EVM allows the user to explore all the features of the ISO224 device. ISO224EVM also features a bipolar (...)

User guide: PDF
Not available on TI.com
Simulation model

TLV6001 PSpice Model (Rev. D)

SBOMA17D.ZIP (22 KB) - PSpice Model
Simulation model

TLV6001 TINA-TI Reference Design (Rev. B)

SBOMA16B.TSC (1051 KB) - TINA-TI Reference Design
Simulation model

TLV6001 TINA-TI Spice Model (Rev. B)

SBOMA15B.ZIP (8 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060024 — Difference amplifier (subtractor) circuit

This design inputs two signals, Vi1 and Vi2, and outputs their difference (subtracts). The input signals typically come from low-impedance sources because the input impedance of this circuit is determined by the resistive network. Difference amplifiers are typically used to amplify differential (...)
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

SBOC495 Simulation for Difference Amplifier (Subtractor) Circuit

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV6001 Single, 5.5-V, 1-MHz, RRIO operational amplifier
Precision op amps (Vos<1mV)
OPA320 Precision, zero-crossover, 20-MHz, 0.9-pA Ib, RRIO, CMOS operational amplifier
Hardware development
Design tool
CIRCUIT060024 Difference amplifier (subtractor) circuit
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-00420 — ADC-based, digitally-isolated, wide-input, 16-channel, AC/DC binary input reference design

This reference design showcases a cost-optimized and scalable ADC-based AC/DC binary input module (BIM) architecture with reinforced isolation. The 16 channels of a 10- or 12-bit SAR ADC are used for sensing multiple binary inputs. The op amps, in addition to keeping the cost per-channel low, (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010065 — High-efficiency, low-emission, isolated DC/DC converter-based analog input module reference design

This reference design is a simplified architecture for generating an isolated power supply for isolated amplifiers for measuring isolated voltages and currents. A fully integrated DC/DC converter with reinforced isolation operating from a 5-V input with configurable 5-V or 5.4-V output (headroom (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010232 — AFE for insulation monitoring in high-voltage EV charging and solar energy reference design

This reference design features an electric bridge DC insulation monitoring (DC-IM) method which allows an accurate symmetrical and asymmetrical insulation leakage detection mechanism and an isolation resistance detection mechanism. We present a new generation of isolated amplifiers and switchers (...)
Design guide: PDF
Reference designs

TIDA-00778 — Current Sensing with <1-us Settling for 1-, 2- & 3-Shunt FOC in 3-Phase Inverter Reference Design

The TIDA-00778 reference design demonstrates fast and accurate current sensing for a three-phase motor driven with sensorless field-oriented control (FOC). Drives with lower audible noise require faster andaccurate current sensing. The most common low-cost current-sensing methods use a single (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01456 — Compact, Non-Isolated 3 Phase Inverter Reference Design for 200-480 VAC Industrial Drives

This reference design realizes a 3 phase inverter subsystem for variable frequency AC inverter drives and servo drives. This design is particularly suited for drive architectures in which the microcontroller and inverter ground are non-isolated. The basic isolated gate driver UCC5320S is used for (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOT-23 (DBV) 5 Ultra Librarian
SOT-SC70 (DCK) 5 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos